Effect of CaO on the performance of Cu-ZnO-ZrO2 catalyst for methanol synthesis from CO2 and H2
- Corresponding author: GAO Wen-gui, gao_wengui@126.com
Citation:
CHEN Jun-jun, GAO Wen-gui, WANG Hua, NA Wei. Effect of CaO on the performance of Cu-ZnO-ZrO2 catalyst for methanol synthesis from CO2 and H2[J]. Journal of Fuel Chemistry and Technology,
;2016, 44(4): 437-448.
STEWART C, HESSAMI M. A study of methods of carbon dioxide capture and sequestration-the sustainability of a photosynthetic bioreactor approach[J]. Energy Convers Manage, 2005,46(3):403-420. doi: 10.1016/j.enconman.2004.03.009
LI L, ZHAO N, WEI W, SUN Y H. A review of research progress on CO2 capture, storage, and utilization in Chinese academy of sciences[J]. Fuel, 2013,108:112-130. doi: 10.1016/j.fuel.2011.08.022
ARESTA M, DIBENEDETTO A. Utilization of CO2 as a chemical feedstock: Opportunities and challenges[J]. Dalton Trans, 2007,28:2975-2992.
SHAMSUL N S, KAMARUDIN S K, RAHMAN N A, KOFLI N T. An overview on the production of bio-methanol as potential renewable energy[J]. Renew Sust Energy Rev, 2014,33(2):578-588.
BAIKER A. Utilization of carbon dioxide in heterogeneous catalytic synthesis[J]. Appl Organomet Chem, 2000,14(12):751-762. doi: 10.1002/(ISSN)1099-0739
NATESAKHAWAT S, LEKSE J W, BALTRUS J P, OHODNICKI JR P R, HOWARD B H, DENG X Y, MATRANGA C. Active sites and structure-activity relationships of copper-based catalysts for carbon dioxide hydrogenation to methanol[J]. ACS Catal, 2012,2(8):1667-1676. doi: 10.1021/cs300008g
LI C M, YUAN X D, FUJIMOTO K. Development of highly stable catalyst for methanol synthesis from carbon dioxide[J]. Appl Catal A: Gen, 2014,469:306-311.
MA Y, SUN Q, WU D, FAN W H, ZHANG Y L, DENG J F. A practical approach for the preparation of high activity Cu/ZnO/ZrO2 catalyst for methanol synthesis from CO2 hydrogenation[J]. Appl Catal A: Gen, 1998,171(1):45-55. doi: 10.1016/S0926-860X(98)00079-9
SLOCZYNSKI J, GRABOWSKI R, OLSZEWSKI P, KOZLOWSKA A, STOCH J, LACHOWSKA M, SKRZYPEK J. Effect of metal oxide additives on the activity and stability of Cu/ZnO/ZrO2 catalysts in the synthesis of methanol from CO2 and H2[J]. Appl Catal A: Gen, 2006,310(8):127-137.
SLOCZYNSKI J, GRABOWSKI R, KOZLOWSKA A, OLSZEWSKI P, LACHOWSKA M, SKRZYPEK J, STOCH J. Effect of Mg and Mn oxide additions on structural and adsorptive properties of Cu/ZnO/ZrO2 catalysts for the methanol synthesis from CO2[J]. Appl Catal A: Gen, 2003,249(1):129-138. doi: 10.1016/S0926-860X(03)00191-1
BAN H Y, LI C M, ASAMI K J, FUJIMOTO K. Influence of rare-earth elements (La, Ce, Nd and Pr) on the performance of Cu/Zn/Zr catalyst for CH3OH synthesis from CO2[J]. Catal Commun, 2014,54:50-54. doi: 10.1016/j.catcom.2014.05.014
TAN L, YANG G H, YONEYAMA Y, KOU Y L, TAN Y H, VITIDSANT T, TSUBAKI N. Iso-butanol direct synthesis from syngas over the alkali metals modified Cr/ZnO catalysts[J]. Appl Catal A: Gen, 2015,505:141-149. doi: 10.1016/j.apcata.2015.08.002
ZHONG C L, GUO X M, MAO D S, WANG S, WU G S, LU G Z. Effects of alkaline-earth oxides on the performance of a CuO-ZrO2 catalyst for methanol synthesis via CO2 hydrogenation[J]. RSC Adv, 2015,5(65):52958-52965. doi: 10.1039/C5RA06508A
ELIAS K F M, LUCREDIO A F, ASSAF E M. Effect of CaO addition on acid properties of Ni-Ca/Al2O3 catalysts applied to ethanol steam reforming[J]. Int J Hydrogen Energy, 2013,38(11):4407-4417. doi: 10.1016/j.ijhydene.2013.01.162
MILLAR G J, HOLM I H, UWINS P J R, DRENNAN J. Characterization of precursors to methanol synthesis catalysts Cu/ZnO system[J]. J Chem Soc Faraday, 1998,94(4):593-600. doi: 10.1039/a703954i
BEHRENS M, SCHLÖGL R. How to prepare a good Cu/ZnO catalyst or the role of solid state chemistry for the synthesis of nanostructured catalysts[J]. Z Anorg Allg Chem, 2013,639(15):2683-2695. doi: 10.1002/zaac.v639.15
LI J L, INUI T. Characterization of precursors of methanol synthesis catalysts, copper/zinc/aluminum oxides, precipitated at different pHs and temperatures[J]. Appl Catal A: Gen, 1996,137(1):105-117. doi: 10.1016/0926-860X(95)00284-7
BEHRENS M, GIRGSDIES F, TRUNSCHKE A, SCHLÖGL R. Minerals as model compounds for Cu/ZnO catalyst precursors: Structural and thermal properties and IR spectra of mineral and synthetic Zincian malachite,rosasite and aurichalcite and a catalyst precursor mixture[J]. Eur J Inorg Chem, 2009,2009(10):1347-1357.
BEMS B, SCHUR M, DASSENOY A, JUNKES H, HEREIN D, SCHLÖGL R. relations between synthesis and microstructural properties of copper/zinc hydroxycarbonates[J]. Chem Eur J, 2003,9(9):2039-2052. doi: 10.1002/chem.200204122
BALTES C, VUKOJEVI S, SCHUTH F. Correlations between synthesis, precursor, and catalyst structure and activity of a large set of CuO/ZnO/Al2O3 catalysts for methanol synthesis[J]. J Catal, 2008,258(2):334-344. doi: 10.1016/j.jcat.2008.07.004
ELIAS F, ACHIM S, THILO L, HARALD H, INGO K. The influence of the precipitation/ageing temperature on a Cu/ZnO/ZrO2 catalyst for methanol synthesis from H2 and CO2[J]. ChemCatChem, 2014,6(6):1721-1730. doi: 10.1002/cctc.v6.6
XIA Wang-qiong, TANG Hao-dong, LIN Sheng-da, CEN Ya-qing, LIU Hua-zhang. Precursor phase transition of Cu/ZnO catalyst for methanol synthesis[J]. Chin J Catal, 2009,30(9):879-884.
STOILOVA D, KOLEVA V, VASSILEVA V. Infrared study of some synthetic phases of malachite (Cu2(OH)2CO3)-hydrozincite (Zn5(OH)6(CO3)2) series[J]. Spectrochi Acta A, 2002,58(9):2051-2059. doi: 10.1016/S1386-1425(01)00677-1
SONG F E, TAN Y S, XIE H J, ZHANG Q D, HAN Y Z. Direct synthesis of dimethylether from biomass-derived syngas over Cu-ZnO-Al2O3-ZrO2(x)/γ-Al2O3 bifunctional catalysts: Effect of Zr-loading[J]. Fuel Process Technol, 2014,126:88-94.
ZHANG Qiang, XU Zheng, QIAN Zai-hu. The study of low pressure synthesis for methanol from CO2/H2 on CuO-ZnO and CuO-ZnO-ZrO2 catalyst[J]. Chin J Catal, 1989,10(1):22-28.
ZHAO H J, LIN M G, FANG K G, ZHOU J, LIU Z Y, ZENG G F, SUN Y H. A novel Cu-Mn/Ca-Zr catalyst for the synthesis of methyl formate from syngas[J]. RSC Adv, 2015,5(83):67630-67637. doi: 10.1039/C5RA13555A
DAI W L, SUN Q, DENG J F, WU D, SUN Y H. XPS studies of Cu/ZnO/Al2O3 ultra-fine catalysts derived by a novel gel oxalate co-precipitation for methanol synthesis by CO2+H2[J]. Appl Surf Sci, 2001,177(3):172-179. doi: 10.1016/S0169-4332(01)00229-X
GUO X M, MAO D S, LU G Z, WANG S, WU G S. Glycine-nitrate combustion synthesis of CuO-ZnO-ZrO2 catalysts for methanol synthesis from CO2 hydrogenation[J]. J Catal, 2010,271(2):178-185. doi: 10.1016/j.jcat.2010.01.009
BONURA G, CORDARO M, CANNILLA C, ARENA F, FRUSTERI F. The changing nature of the active site of Cu-Zn-Zr catalysts for the CO2 hydrogenation reaction to methanol[J]. Appl Catal B: Environ, 2014,152.
GUO X M, MAO D S, LU G Z, WANG S, WU G S. CO2 hydrogenation to methanol over Cu/ZnO/ZrO2 catalysts prepared via a route of solid-state reaction[J]. Catal Commun, 2011,12(12):1095-1098. doi: 10.1016/j.catcom.2011.03.033
LI Ji-tao, ZHANG Wei-de, CHEN Ming-dan, OU Ze-tang. Study of TPD and TPSR of CO2 adsorption on Cu based catalyst[J]. Nat gas Chem Eng, 1998,23(5):14-17.
HATTORI H. Heterogeneous basic catalysis[J]. Chem Rev, 1995,95(3):537-558. doi: 10.1021/cr00035a005
ARENA F, ITALIANO G, BARBERA K, BORDIGA S, BONURA G, SPADARO L, FRSTERI F. Solid-state interactions, adsorption sites and functionality of Cu-ZnO/ZrO2 catalysts in the CO2 hydrogenation to CH3OH[J]. Appl Catal A: Gen, 2008,350(1):16-23. doi: 10.1016/j.apcata.2008.07.028
XU You-ming, SHEN Ben-xian, HE Jin-hai, LUO Xi-hui. Study of surface acidity of γ-Al2O3 support by PASCA and NH3-TPD[J]. J Inst Anal, 2006,25(1):41-44.
JUNG K T, BEL A T. The effects of synthesis and pretreatment conditions on the bulk structure and surface properties of zirconia[J]. J Mol Catal A: Chem, 2000,163(1/2):27-42.
SAMSON K, ŠLIWA M, SOCHA R P, GORA-MAREK K, MUCHA D, RUTKOWSKA-ZBIK D, PAUL J F, RUGGIERO-MIKOLAJCZYK M, GRABOWSKI R, SŁOCZYNKI J. Influence of ZrO2 structure and copper electronic state on activity of Cu/ZrO2 catalysts in methanol synthesis from CO2[J]. ACS Catal, 2014,4(10):3730-3741.
Lei Shu , Zhengqing Hao , Kai Yan , Hong Wang , Lihua Zhu , Fang Chen , Nan Wang . Development of a Double-Carbon Related Experiment: Preparation, Characterization and Carbon-Capture Ability of Eggshell-Derived CaO. University Chemistry, 2024, 39(4): 149-156. doi: 10.3866/PKU.DXHX202310134
Yubang Li , Xixi Hu , Daiqian Xie . The microscopic formation mechanism of O + H2 products from photodissociation of H2O. Chinese Journal of Structural Chemistry, 2024, 43(5): 100274-100274. doi: 10.1016/j.cjsc.2024.100274
Liuyun Chen , Wenju Wang , Tairong Lu , Xuan Luo , Xinling Xie , Kelin Huang , Shanli Qin , Tongming Su , Zuzeng Qin , Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054
Fahui Xiang , Lu Li , Zhen Yuan , Wuji Wei , Xiaoqing Zheng , Shimin Chen , Yisi Yang , Liangji Chen , Zizhu Yao , Jianwei Fu , Zhangjing Zhang , Shengchang Xiang . Enhanced C2H2/CO2 separation in tetranuclear Cu(Ⅱ) cluster-based metal-organic frameworks by adjusting divider length of pore space partition. Chinese Chemical Letters, 2025, 36(3): 109672-. doi: 10.1016/j.cclet.2024.109672
Yongheng Ren , Yang Chen , Hongwei Chen , Lu Zhang , Jiangfeng Yang , Qi Shi , Lin-Bing Sun , Jinping Li , Libo Li . Electrostatically driven kinetic Inverse CO2/C2H2 separation in LTA-type zeolites. Chinese Journal of Structural Chemistry, 2024, 43(10): 100394-100394. doi: 10.1016/j.cjsc.2024.100394
Huirong Chen , Yingzhi He , Yan Han , Jianbo Hu , Jiantang Li , Yunjia Jiang , Basem Keshta , Lingyao Wang , Yuanbin Zhang . A new SIFSIX anion pillared cage MOF with crs topological structure for efficient C2H2/CO2 separation. Chinese Journal of Structural Chemistry, 2025, 44(2): 100508-100508. doi: 10.1016/j.cjsc.2024.100508
Ping Wang , Tianbao Zhang , Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328
Bicheng Zhu , Jingsan Xu . S-scheme heterojunction photocatalyst for H2 evolution coupled with organic oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100327-100327. doi: 10.1016/j.cjsc.2024.100327
Peipei Sun , Jinyuan Zhang , Yanhua Song , Zhao Mo , Zhigang Chen , Hui Xu . 引入内建电场增强光载流子分离以促进H2的生产. Acta Physico-Chimica Sinica, 2024, 40(11): 2311001-. doi: 10.3866/PKU.WHXB202311001
Yi Herng Chan , Zhe Phak Chan , Serene Sow Mun Lock , Chung Loong Yiin , Shin Ying Foong , Mee Kee Wong , Muhammad Anwar Ishak , Ven Chian Quek , Shengbo Ge , Su Shiung Lam . Thermal pyrolysis conversion of methane to hydrogen (H2): A review on process parameters, reaction kinetics and techno-economic analysis. Chinese Chemical Letters, 2024, 35(8): 109329-. doi: 10.1016/j.cclet.2023.109329
Yong Shu , Xing Chen , Sai Duan , Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102
Yufei Jia , Fei Li , Ke Fan . Surface reconstruction of Cu-based bimetallic catalysts for electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100255-100255. doi: 10.1016/j.cjsc.2024.100255
Xiang-Da Zhang , Jian-Mei Huang , Xiaorong Zhu , Chang Liu , Yue Yin , Jia-Yi Huang , Yafei Li , Zhi-Yuan Gu . Auto-tandem CO2 reduction by reconstructed Cu imidazole framework isomers: Unveiling pristine MOF-mediated CO2 activation. Chinese Chemical Letters, 2025, 36(5): 109937-. doi: 10.1016/j.cclet.2024.109937
Hualin Jiang , Wenxi Ye , Huitao Zhen , Xubiao Luo , Vyacheslav Fominski , Long Ye , Pinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
Xue Liu , Lipeng Wang , Luling Li , Kai Wang , Wenju Liu , Biao Hu , Daofan Cao , Fenghao Jiang , Junguo Li , Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049
Xiuzheng Deng , Yi Ke , Jiawen Ding , Yingtang Zhou , Hui Huang , Qian Liang , Zhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064
Hong Dong , Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307
Muhammad Humayun , Mohamed Bououdina , Abbas Khan , Sajjad Ali , Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193
Zixuan Zhu , Xianjin Shi , Yongfang Rao , Yu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954
a: P-CaO16%; b: P-CaO8%; c: P-CaO4%; d: P-CaO2%; e:P-CaO1%; f: P-blank
(a): M-blank; (b): M-CaO2%
a: M-CaO16%; b: M-CaO8%; c: M-CaO4%; d: M-CaO2%; e: M-CaO1%; f: M-blank
(a): CZZblank; (b): CZZCaO2%