Citation: CHEN Jun-jun, GAO Wen-gui, WANG Hua, NA Wei. Effect of CaO on the performance of Cu-ZnO-ZrO2 catalyst for methanol synthesis from CO2 and H2[J]. Journal of Fuel Chemistry and Technology, ;2016, 44(4): 437-448. shu

Effect of CaO on the performance of Cu-ZnO-ZrO2 catalyst for methanol synthesis from CO2 and H2

  • Corresponding author: GAO Wen-gui, gao_wengui@126.com
  • Received Date: 28 October 2015
    Revised Date: 25 January 2016

Figures(16)

  • CuO:ZnO:ZrO2=5:4:1 (molar ratio) catalysts were prepared with CaO doping of 0,1%, 2%, 4%, 8%, 16% (molar fraction) by cocurrent-flow co-precipitation. X-ray diffraction (XRD), thermal analysis(TG-DTG), Fourier infrared (FT-IR), N2 adsorption desorption (BET), X-ray photoelectron spectroscopy (XPS), hydrogen temperature programmed reduction (H2-TPR), CO2 temperature programmed desorption (CO2-TPD) and NH3 temperature programmed desorption (NH3-TPD) were used to characterize the catalysts. The catalyst activity was evaluated with a lab-made fixed bed reactor. Results show that CaO doping enhances Lewis acid and surface alkaline of the catalyst, increases the amount of high temperature carbonate in the catalysts, improves the thermal stability, reduces the CuO particle size, enhances the synergistic effect of Cu-Zn, increases the Cu specific surface area and the Cu dispersion. The catalyst activity is influenced by the surface acidity, the specific surface area of copper, the synergistic effect of Cu-Zn and the dispersion of copper. When the doping amount of CaO is 2%, the copper specific surface area is 79.3 m2/g, the dispersion degree of copper is 34.8%, the CO2 conversion is 19.01%, the selectivity of methanol is 24.55% and the yield of methanol is 0.044 g/(gcat·h), catalyst activity is the highest. With the amount of CaO increasing, the excessive CaO occupies the catalyst pore and covers the surface active sites, the Lewis acid and the surface alkaline of the catalysts become so strong that the effective contact of CuO and H2 is reduced, CO2 is difficult to desorb, resulting in decrease of catalytic activity. Therefore, the proper doping amount of CaO (2%) can promote the synthesis of methanol through CO2 hydrogenation.
  • 加载中
    1. [1]

      STEWART C, HESSAMI M. A study of methods of carbon dioxide capture and sequestration-the sustainability of a photosynthetic bioreactor approach[J]. Energy Convers Manage, 2005,46(3):403-420. doi: 10.1016/j.enconman.2004.03.009

    2. [2]

      LI L, ZHAO N, WEI W, SUN Y H. A review of research progress on CO2 capture, storage, and utilization in Chinese academy of sciences[J]. Fuel, 2013,108:112-130. doi: 10.1016/j.fuel.2011.08.022

    3. [3]

      ARESTA M, DIBENEDETTO A. Utilization of CO2 as a chemical feedstock: Opportunities and challenges[J]. Dalton Trans, 2007,28:2975-2992.  

    4. [4]

      SHAMSUL N S, KAMARUDIN S K, RAHMAN N A, KOFLI N T. An overview on the production of bio-methanol as potential renewable energy[J]. Renew Sust Energy Rev, 2014,33(2):578-588.  

    5. [5]

      BAIKER A. Utilization of carbon dioxide in heterogeneous catalytic synthesis[J]. Appl Organomet Chem, 2000,14(12):751-762. doi: 10.1002/(ISSN)1099-0739

    6. [6]

      NATESAKHAWAT S, LEKSE J W, BALTRUS J P, OHODNICKI JR P R, HOWARD B H, DENG X Y, MATRANGA C. Active sites and structure-activity relationships of copper-based catalysts for carbon dioxide hydrogenation to methanol[J]. ACS Catal, 2012,2(8):1667-1676. doi: 10.1021/cs300008g

    7. [7]

      LI C M, YUAN X D, FUJIMOTO K. Development of highly stable catalyst for methanol synthesis from carbon dioxide[J]. Appl Catal A: Gen, 2014,469:306-311.  

    8. [8]

      MA Y, SUN Q, WU D, FAN W H, ZHANG Y L, DENG J F. A practical approach for the preparation of high activity Cu/ZnO/ZrO2 catalyst for methanol synthesis from CO2 hydrogenation[J]. Appl Catal A: Gen, 1998,171(1):45-55. doi: 10.1016/S0926-860X(98)00079-9

    9. [9]

      SLOCZYNSKI J, GRABOWSKI R, OLSZEWSKI P, KOZLOWSKA A, STOCH J, LACHOWSKA M, SKRZYPEK J. Effect of metal oxide additives on the activity and stability of Cu/ZnO/ZrO2 catalysts in the synthesis of methanol from CO2 and H2[J]. Appl Catal A: Gen, 2006,310(8):127-137.  

    10. [10]

      SLOCZYNSKI J, GRABOWSKI R, KOZLOWSKA A, OLSZEWSKI P, LACHOWSKA M, SKRZYPEK J, STOCH J. Effect of Mg and Mn oxide additions on structural and adsorptive properties of Cu/ZnO/ZrO2 catalysts for the methanol synthesis from CO2[J]. Appl Catal A: Gen, 2003,249(1):129-138. doi: 10.1016/S0926-860X(03)00191-1

    11. [11]

      BAN H Y, LI C M, ASAMI K J, FUJIMOTO K. Influence of rare-earth elements (La, Ce, Nd and Pr) on the performance of Cu/Zn/Zr catalyst for CH3OH synthesis from CO2[J]. Catal Commun, 2014,54:50-54. doi: 10.1016/j.catcom.2014.05.014

    12. [12]

      TAN L, YANG G H, YONEYAMA Y, KOU Y L, TAN Y H, VITIDSANT T, TSUBAKI N. Iso-butanol direct synthesis from syngas over the alkali metals modified Cr/ZnO catalysts[J]. Appl Catal A: Gen, 2015,505:141-149. doi: 10.1016/j.apcata.2015.08.002

    13. [13]

      ZHONG C L, GUO X M, MAO D S, WANG S, WU G S, LU G Z. Effects of alkaline-earth oxides on the performance of a CuO-ZrO2 catalyst for methanol synthesis via CO2 hydrogenation[J]. RSC Adv, 2015,5(65):52958-52965. doi: 10.1039/C5RA06508A

    14. [14]

      ELIAS K F M, LUCREDIO A F, ASSAF E M. Effect of CaO addition on acid properties of Ni-Ca/Al2O3 catalysts applied to ethanol steam reforming[J]. Int J Hydrogen Energy, 2013,38(11):4407-4417. doi: 10.1016/j.ijhydene.2013.01.162

    15. [15]

      MILLAR G J, HOLM I H, UWINS P J R, DRENNAN J. Characterization of precursors to methanol synthesis catalysts Cu/ZnO system[J]. J Chem Soc Faraday, 1998,94(4):593-600. doi: 10.1039/a703954i

    16. [16]

      BEHRENS M, SCHLÖGL R. How to prepare a good Cu/ZnO catalyst or the role of solid state chemistry for the synthesis of nanostructured catalysts[J]. Z Anorg Allg Chem, 2013,639(15):2683-2695. doi: 10.1002/zaac.v639.15

    17. [17]

      LI J L, INUI T. Characterization of precursors of methanol synthesis catalysts, copper/zinc/aluminum oxides, precipitated at different pHs and temperatures[J]. Appl Catal A: Gen, 1996,137(1):105-117. doi: 10.1016/0926-860X(95)00284-7

    18. [18]

      BEHRENS M, GIRGSDIES F, TRUNSCHKE A, SCHLÖGL R. Minerals as model compounds for Cu/ZnO catalyst precursors: Structural and thermal properties and IR spectra of mineral and synthetic Zincian malachite,rosasite and aurichalcite and a catalyst precursor mixture[J]. Eur J Inorg Chem, 2009,2009(10):1347-1357.  

    19. [19]

      BEMS B, SCHUR M, DASSENOY A, JUNKES H, HEREIN D, SCHLÖGL R. relations between synthesis and microstructural properties of copper/zinc hydroxycarbonates[J]. Chem Eur J, 2003,9(9):2039-2052. doi: 10.1002/chem.200204122

    20. [20]

      BALTES C, VUKOJEVI S, SCHUTH F. Correlations between synthesis, precursor, and catalyst structure and activity of a large set of CuO/ZnO/Al2O3 catalysts for methanol synthesis[J]. J Catal, 2008,258(2):334-344. doi: 10.1016/j.jcat.2008.07.004

    21. [21]

      ELIAS F, ACHIM S, THILO L, HARALD H, INGO K. The influence of the precipitation/ageing temperature on a Cu/ZnO/ZrO2 catalyst for methanol synthesis from H2 and CO2[J]. ChemCatChem, 2014,6(6):1721-1730. doi: 10.1002/cctc.v6.6

    22. [22]

      XIA Wang-qiong, TANG Hao-dong, LIN Sheng-da, CEN Ya-qing, LIU Hua-zhang. Precursor phase transition of Cu/ZnO catalyst for methanol synthesis[J]. Chin J Catal, 2009,30(9):879-884.  

    23. [23]

      STOILOVA D, KOLEVA V, VASSILEVA V. Infrared study of some synthetic phases of malachite (Cu2(OH)2CO3)-hydrozincite (Zn5(OH)6(CO3)2) series[J]. Spectrochi Acta A, 2002,58(9):2051-2059. doi: 10.1016/S1386-1425(01)00677-1

    24. [24]

      SONG F E, TAN Y S, XIE H J, ZHANG Q D, HAN Y Z. Direct synthesis of dimethylether from biomass-derived syngas over Cu-ZnO-Al2O3-ZrO2(x)/γ-Al2O3 bifunctional catalysts: Effect of Zr-loading[J]. Fuel Process Technol, 2014,126:88-94.

    25. [25]

      ZHANG Qiang, XU Zheng, QIAN Zai-hu. The study of low pressure synthesis for methanol from CO2/H2 on CuO-ZnO and CuO-ZnO-ZrO2 catalyst[J]. Chin J Catal, 1989,10(1):22-28.

    26. [26]

      ZHAO H J, LIN M G, FANG K G, ZHOU J, LIU Z Y, ZENG G F, SUN Y H. A novel Cu-Mn/Ca-Zr catalyst for the synthesis of methyl formate from syngas[J]. RSC Adv, 2015,5(83):67630-67637. doi: 10.1039/C5RA13555A

    27. [27]

      DAI W L, SUN Q, DENG J F, WU D, SUN Y H. XPS studies of Cu/ZnO/Al2O3 ultra-fine catalysts derived by a novel gel oxalate co-precipitation for methanol synthesis by CO2+H2[J]. Appl Surf Sci, 2001,177(3):172-179. doi: 10.1016/S0169-4332(01)00229-X

    28. [28]

      GUO X M, MAO D S, LU G Z, WANG S, WU G S. Glycine-nitrate combustion synthesis of CuO-ZnO-ZrO2 catalysts for methanol synthesis from CO2 hydrogenation[J]. J Catal, 2010,271(2):178-185. doi: 10.1016/j.jcat.2010.01.009

    29. [29]

      BONURA G, CORDARO M, CANNILLA C, ARENA F, FRUSTERI F. The changing nature of the active site of Cu-Zn-Zr catalysts for the CO2 hydrogenation reaction to methanol[J]. Appl Catal B: Environ, 2014,152.  

    30. [30]

      GUO X M, MAO D S, LU G Z, WANG S, WU G S. CO2 hydrogenation to methanol over Cu/ZnO/ZrO2 catalysts prepared via a route of solid-state reaction[J]. Catal Commun, 2011,12(12):1095-1098. doi: 10.1016/j.catcom.2011.03.033

    31. [31]

      LI Ji-tao, ZHANG Wei-de, CHEN Ming-dan, OU Ze-tang. Study of TPD and TPSR of CO2 adsorption on Cu based catalyst[J]. Nat gas Chem Eng, 1998,23(5):14-17.

    32. [32]

      HATTORI H. Heterogeneous basic catalysis[J]. Chem Rev, 1995,95(3):537-558. doi: 10.1021/cr00035a005

    33. [33]

      ARENA F, ITALIANO G, BARBERA K, BORDIGA S, BONURA G, SPADARO L, FRSTERI F. Solid-state interactions, adsorption sites and functionality of Cu-ZnO/ZrO2 catalysts in the CO2 hydrogenation to CH3OH[J]. Appl Catal A: Gen, 2008,350(1):16-23. doi: 10.1016/j.apcata.2008.07.028

    34. [34]

      XU You-ming, SHEN Ben-xian, HE Jin-hai, LUO Xi-hui. Study of surface acidity of γ-Al2O3 support by PASCA and NH3-TPD[J]. J Inst Anal, 2006,25(1):41-44.

    35. [35]

      JUNG K T, BEL A T. The effects of synthesis and pretreatment conditions on the bulk structure and surface properties of zirconia[J]. J Mol Catal A: Chem, 2000,163(1/2):27-42.  

    36. [36]

      SAMSON K, ŠLIWA M, SOCHA R P, GORA-MAREK K, MUCHA D, RUTKOWSKA-ZBIK D, PAUL J F, RUGGIERO-MIKOLAJCZYK M, GRABOWSKI R, SŁOCZYNKI J. Influence of ZrO2 structure and copper electronic state on activity of Cu/ZrO2 catalysts in methanol synthesis from CO2[J]. ACS Catal, 2014,4(10):3730-3741.

  • 加载中
    1. [1]

      Lei Shu Zhengqing Hao Kai Yan Hong Wang Lihua Zhu Fang Chen Nan Wang . Development of a Double-Carbon Related Experiment: Preparation, Characterization and Carbon-Capture Ability of Eggshell-Derived CaO. University Chemistry, 2024, 39(4): 149-156. doi: 10.3866/PKU.DXHX202310134

    2. [2]

      Yubang Li Xixi Hu Daiqian Xie . The microscopic formation mechanism of O + H2 products from photodissociation of H2O. Chinese Journal of Structural Chemistry, 2024, 43(5): 100274-100274. doi: 10.1016/j.cjsc.2024.100274

    3. [3]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    4. [4]

      Fahui XiangLu LiZhen YuanWuji WeiXiaoqing ZhengShimin ChenYisi YangLiangji ChenZizhu YaoJianwei FuZhangjing ZhangShengchang Xiang . Enhanced C2H2/CO2 separation in tetranuclear Cu(Ⅱ) cluster-based metal-organic frameworks by adjusting divider length of pore space partition. Chinese Chemical Letters, 2025, 36(3): 109672-. doi: 10.1016/j.cclet.2024.109672

    5. [5]

      Yongheng Ren Yang Chen Hongwei Chen Lu Zhang Jiangfeng Yang Qi Shi Lin-Bing Sun Jinping Li Libo Li . Electrostatically driven kinetic Inverse CO2/C2H2 separation in LTA-type zeolites. Chinese Journal of Structural Chemistry, 2024, 43(10): 100394-100394. doi: 10.1016/j.cjsc.2024.100394

    6. [6]

      Huirong Chen Yingzhi He Yan Han Jianbo Hu Jiantang Li Yunjia Jiang Basem Keshta Lingyao Wang Yuanbin Zhang . A new SIFSIX anion pillared cage MOF with crs topological structure for efficient C2H2/CO2 separation. Chinese Journal of Structural Chemistry, 2025, 44(2): 100508-100508. doi: 10.1016/j.cjsc.2024.100508

    7. [7]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

    8. [8]

      Bicheng Zhu Jingsan Xu . S-scheme heterojunction photocatalyst for H2 evolution coupled with organic oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100327-100327. doi: 10.1016/j.cjsc.2024.100327

    9. [9]

      Peipei Sun Jinyuan Zhang Yanhua Song Zhao Mo Zhigang Chen Hui Xu . 引入内建电场增强光载流子分离以促进H2的生产. Acta Physico-Chimica Sinica, 2024, 40(11): 2311001-. doi: 10.3866/PKU.WHXB202311001

    10. [10]

      Yi Herng ChanZhe Phak ChanSerene Sow Mun LockChung Loong YiinShin Ying FoongMee Kee WongMuhammad Anwar IshakVen Chian QuekShengbo GeSu Shiung Lam . Thermal pyrolysis conversion of methane to hydrogen (H2): A review on process parameters, reaction kinetics and techno-economic analysis. Chinese Chemical Letters, 2024, 35(8): 109329-. doi: 10.1016/j.cclet.2023.109329

    11. [11]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102

    12. [12]

      Yufei Jia Fei Li Ke Fan . Surface reconstruction of Cu-based bimetallic catalysts for electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100255-100255. doi: 10.1016/j.cjsc.2024.100255

    13. [13]

      Xiang-Da ZhangJian-Mei HuangXiaorong ZhuChang LiuYue YinJia-Yi HuangYafei LiZhi-Yuan Gu . Auto-tandem CO2 reduction by reconstructed Cu imidazole framework isomers: Unveiling pristine MOF-mediated CO2 activation. Chinese Chemical Letters, 2025, 36(5): 109937-. doi: 10.1016/j.cclet.2024.109937

    14. [14]

      Hualin JiangWenxi YeHuitao ZhenXubiao LuoVyacheslav FominskiLong YePinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984

    15. [15]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    16. [16]

      Xue Liu Lipeng Wang Luling Li Kai Wang Wenju Liu Biao Hu Daofan Cao Fenghao Jiang Junguo Li Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049

    17. [17]

      Xiuzheng DengYi KeJiawen DingYingtang ZhouHui HuangQian LiangZhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064

    18. [18]

      Hong Dong Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307

    19. [19]

      Muhammad Humayun Mohamed Bououdina Abbas Khan Sajjad Ali Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193

    20. [20]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

Metrics
  • PDF Downloads(11)
  • Abstract views(3310)
  • HTML views(774)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return