Study on the effect and mechanism of foreign moisture on coal spontaneous combustion
- Corresponding author: WANG Jun-feng, tyutwjf@163.com
Citation:
ZHANG Xiao-yu, ZHANG Yu-long, WANG Jun-feng, HAO Hong-de, WU Yu-guo, ZHOU Chun-shan. Study on the effect and mechanism of foreign moisture on coal spontaneous combustion[J]. Journal of Fuel Chemistry and Technology,
;2020, 48(1): 1-10.
XU Chang-fu, FAN Shao-wu, YAO Hai-fei, ZHANG Qun, ZHENG Zhong-ya, WU Hai-jun. Experimental study on the effect of moisture on critical temperature of coal spontaneous combustion[J]. Coal Sci Technol, 2015,43(7):65-68.
JIN Zhi-xin, WU Si-yuan, DENG Cun-bao, DAI Feng-wei, WANG Xue-feng. Theoretical calculation of water effecton power plant flue gas adsorption by goaf coal[J]. J Fuel Chem Technol, 2017,45(9):1035-1042. doi: 10.3969/j.issn.0253-2409.2017.09.002
LIU Li-hua, CHU Mo, DANG Tong-tong, QU Yang, SUN Ren-hui, CHANG Zhi-bing. Effect of moisture adsorption and air pre-oxidation on spontaneous combustion liability of upgraded lignite[J]. J Fuel Chem Technol, 2016,44(10):1153-1159. doi: 10.3969/j.issn.0253-2409.2016.10.001
KÜÇÜK A, KADIOĞLU Y, GÜLABOĞLU M S. A study of spontaneous combustion characteristics of a Turkish lignite:Particle size, moisture of coal, humidity of air[J]. Combust Flame, 2003,133:255-261. doi: 10.1016/S0010-2180(02)00553-9
BHAT S, AGARWAL P K. The effect of moisture condensation on the spontaneous combustibility of coal[J]. Fuel, 1996,75:1523-1532. doi: 10.1016/0016-2361(96)00121-4
LEI Dan, WANG De-ming, ZHONG Xiao-xing, LI Jing-shuai, JIAO Xin-ming. Study on the effect of moisture on oxygen consumption of coal oxidation at low temperature[J]. Saf Coal Mines, 2011,42(7):28-31.
ZHANG K, YOU C F. Effect of upgraded lignite product water content on the propensity for spontaneous ignition[J]. Energy Fuels, 2013,27:20-26. doi: 10.1021/ef301771r
ZHENG Xue-zhao, LU Jun-hui, XIAO Yang, ZHAO Yan-hui, LI Qing-wei. Experimental study on the effect of high moisture content on spontaneous combustion characteristic parameters of coal[J]. J Saf Environ, 2014,14(4):71-75.
BEAMISH B B, GARTH F, HAMILTON R. Effect of moisture content on the R70 self-heating rate of Callide coal[J]. Int J Coal Geol, 2005,64:133-138. doi: 10.1016/j.coal.2005.03.011
QIN Bo-tao, SONG Shuang, QI Xu-yao, ZHONG Xiao-xing, LIU Ci. Effect of soaking process on spontaneous combustion characteristics of long-flame coal[J]. J China Coal Soc, 2018,284(5):1350-1357.
FAN Jiu-yuan. The effect of hydrostatic pressure water infusion in coal seam and influence of water content on spontaneous combustion of coal[D]. Tangshan: North China University of Science and Technology, 2018.
BAO Qing-guo, ZHOU Shun. Application research of comprehensive dust control technology in heading face[J]. Min Saf Environ Prot, 2013,40(6):48-51.
LIANG Guo-dong. Study on multi-ionic wetting agent compounding method to suppress mine dust and its application[J]. Min Process Equip, 2018,46(10):8-12. doi: 10.3969/j.issn.1001-3954.2018.10.003
XU Chang-fu. Study on macro characteristics and prevention and cure technology of spontaneous combustion in water leaching coal[D]. Beijing: China University of Mining and Technology, 2015.
ZHANG Yu-tao, WANG Du-xia, ZHONG Xiao-xing. Study on the effect of water on the low-temperature oxidation of coal[J]. Saf Coal Mines, 2007,38(11):1-4. doi: 10.3969/j.issn.1003-496X.2007.11.001
DENG Jun, DENG Yin, ZHANG Yu-tao. Experimental study on the effect of water content on spontaneous combustion characteristics of coal secondary oxidation[J]. J Xi'an Univ Sci Technol, 2016,36(4):451-456.
LIANG Xiao-yu, WANG De-ming. Effect of moisture on spontaneous combustion of coal[J]. J Liaoning Technical Univ (Nat Sci), 2003,22(4):472-474. doi: 10.3969/j.issn.1008-0562.2003.04.015
SORIA M A, ROCHA C, TOSTI S, MENDES A, MADEIRA L M. COx free hydrogen production through water-gas shift reaction in different hybrid multifunctional reactors[J]. Chem Eng J, 2019,356:727-736. doi: 10.1016/j.cej.2018.09.044
HE Qi-lin, WANG De-ming. Determination of the effect of coal moisture content on oxygen absorption and heat release of coal[J]. J China Univ Technol, 2005,34:358-362. doi: 10.3321/j.issn:1000-1964.2005.03.020
WANG H H, DIUGOGORSKI B Z, KENNEDY E M. Role of inherent water in low-temperature oxidation of coal[J]. Combust Sci Technol, 2003,175(2):253-270. doi: 10.1080/00102200302406
ZHANG Y L, WANG J F, XUE S, WU Y, CHANG L P, ZHANG Y L, LI Z F. Evaluation of the susceptibility of coal to spontaneous combustion by a TG profile subtraction method[J]. Korean J Chem Eng, 2016,33(3):862-872. doi: 10.1007/s11814-015-0230-8
LI Z F, ZHANG Y L, JING X X, ZHANG Y L, CHANG L P. Insight into the intrinsic reaction of brown coal oxidation at low temperature:Differential scanning calorimetry study[J]. Fuel Process Technol, 2016,147:64-70. doi: 10.1016/j.fuproc.2015.07.030
SHI Ting, DENG Jun, WANG Xiao-fang, WEN Zhen-yi. Mechanism spontaneous combustion of coal at initial stage[J]. J Fuel Chem Technol, 2004,32(6):652-657. doi: 10.3969/j.issn.0253-2409.2004.06.003
JING Xiao-xia. Evolution of physicochemical structure of lignite during thermal drying and its effect on moisture recovery of refined coal[D]. Taiyuan: Taiyuan University of Technology, 2015.
Tong Zhou , Liyi Xie , Chuyu Liu , Xiyan Zheng , Bao Li . Between Sobriety and Intoxication: The Fascinating Journey of Sauce-Flavored Latte. University Chemistry, 2024, 39(9): 55-58. doi: 10.12461/PKU.DXHX202312048
Lan Ma , Cailu He , Ziqi Liu , Yaohan Yang , Qingxia Ming , Xue Luo , Tianfeng He , Liyun Zhang . Magical Surface Chemistry: Fabrication and Application of Oil-Water Separation Membranes. University Chemistry, 2024, 39(5): 218-227. doi: 10.3866/PKU.DXHX202311046
Supin Zhao , Jing Xie . Understanding the Vibrational Stark Effect of Water Molecules Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 178-185. doi: 10.12461/PKU.DXHX202406024
Zhonghua Xi , Xuanfeng Kong , Jinyue Yang , Bin Liu , Tingyu Zhu , Hui Zhang , Wenwei Zhang . Construction of Public Teaching Instrument Platform and Exploration of Opening Mechanism. University Chemistry, 2024, 39(7): 200-206. doi: 10.12461/PKU.DXHX202405123
Bo YANG , Gongxuan LÜ , Jiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346
Huan LI , Shengyan WANG , Long Zhang , Yue CAO , Xiaohan YANG , Ziliang WANG , Wenjuan ZHU , Wenlei ZHU , Yang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088
Linhan Tian , Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056
Yongjie ZHANG , Bintong HUANG , Yueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247
Yanan Jiang , Yuchen Ma . Brief Discussion on the Electronic Exchange Interaction in Quantum Chemistry Computations. University Chemistry, 2025, 40(3): 10-15. doi: 10.12461/PKU.DXHX202402058
Zhi Zhou , Yu-E Lian , Yuqing Li , Hui Gao , Wei Yi . New Insights into the Molecular Mechanism Behind Clinical Tragedies of “Cephalosporin with Alcohol”. University Chemistry, 2025, 40(3): 42-51. doi: 10.12461/PKU.DXHX202403104
Huanhuan XIE , Yingnan SONG , Lei LI . Two-dimensional single-layer BiOI nanosheets: Lattice thermal conductivity and phonon transport mechanism. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 702-708. doi: 10.11862/CJIC.20240281
Yuxin CHEN , Yanni LING , Yuqing YAO , Keyi WANG , Linna LI , Xin ZHANG , Qin WANG , Hongdao LI , Wenmin WANG . Construction, structures, and interaction with DNA of two SmⅢ4 complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1141-1150. doi: 10.11862/CJIC.20240258
Zhao Lu , Hu Lv , Qinzhuang Liu , Zhongliao Wang . Modulating NH2 Lewis Basicity in CTF-NH2 through Donor-Acceptor Groups for Optimizing Photocatalytic Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(12): 2405005-. doi: 10.3866/PKU.WHXB202405005
Jia Zhou . Constructing Potential Energy Surface of Water Molecule by Quantum Chemistry and Machine Learning: Introduction to a Comprehensive Computational Chemistry Experiment. University Chemistry, 2024, 39(3): 351-358. doi: 10.3866/PKU.DXHX202309060
Xuan Zhou , Yi Fan , Zhuoqi Jiang , Zhipeng Li , Guowen Yuan , Laiying Zhang , Xu Hou . Liquid Gating Mechanism and Basic Properties Characterization: a New Experimental Design for Interface and Surface Properties in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 113-120. doi: 10.12461/PKU.DXHX202407111
Jiaxuan Zuo , Kun Zhang , Jing Wang , Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042
Changqing MIAO , Fengjiao CHEN , Wenyu LI , Shujie WEI , Yuqing YAO , Keyi WANG , Ni WANG , Xiaoyan XIN , Ming FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192
Jiaxun Wu , Mingde Li , Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098
Jiabo Huang , Quanxin Li , Zhongyan Cao , Li Dang , Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172
Huiying Xu , Minghui Liang , Zhi Zhou , Hui Gao , Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011
1: nitrogen; 2: air; 3: mass flow meter; 4: heating furnace; 5: preheating gas circuit; 6: thermocouple in coal sample; 7: gas outlet; 8: thermocouple in furnace; 9: gas purifier; 10: air generator; 11: hydrogen generator; 12: gas chromatograph; 13: computer; 14: argon
(a): slow oxidation stage; (b): accelerated oxidation stage; (c): rapid oxidation stage
(a): slow oxidation stage; (b): accelerated oxidation stage; (c): rapid oxidation stage
(a): slow oxidation stage; (b): accelerated oxidation stage; (c): rapid oxidation stage