Citation: CHAO Lei, WU Dan-dan, LI Gong. Study on catalytic properties of Cu-Fe-MgO/AlPO4-5 for hydrogen production from steam reforming of methanol[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(9): 1105-1113. shu

Study on catalytic properties of Cu-Fe-MgO/AlPO4-5 for hydrogen production from steam reforming of methanol

  • Corresponding author: LI Gong, ligong136@126.com
  • Received Date: 24 April 2017
    Revised Date: 27 June 2017

Figures(8)

  • Cu-Fe-MgO/AlPO4-5 catalysts were prepared by impregnation method using AlPO4-5 molecular sieve as support to produce hydrogen through steam reforming of methanol. The catalysts were characterized by XRD, N2 adsorption-desorption, H2-TPR, CO2-TPD and NH3-TPD. The reaction results indicated that the addition of Fe could significantly increase the conversion of methanol, but the selectivity of dimethyl ether was also increased. The addition of MgO had obvious effects on the reduction of dimethyl ether formation, but the conversion of methanol could not be improved. The catalyst with Cu, Fe and MgO loadings of 15%, 6% and 1%, respectively showed a higher catalytic activity. Under the reaction conditions of 300℃, 1.1:1 of molar ratio of water to alcohol and 2.51 h-1 of mass space velocity, the conversion of methanol was 93.08%, the selectivity of carbon dioxide and hydrogen were 95.80% and 96.93% respectively and the selectivity of by-products of carbon monoxide and dimethyl ether were 1.70% and 2.51% respectively. According to the characterization results, Cu-Fe-MgO/AlPO4-5 contains weak acid and base sites, strong acid and base sites. It can be concluded that appropriate amount of MgO increases the amount of strong basic sites, reduces the strength of weak acidic sites, but had little effects on strong acidic sites.
  • 加载中
    1. [1]

      HU J, ZHANG Q, JING YLEE D. Photosynthetic hydrogen production from enzyme-hydrolyzed micro-grinded maize straws[J]. Int J Hydrogen Energy, 2016,41(46):21665-21669. doi: 10.1016/j.ijhydene.2016.07.029

    2. [2]

      LEE Y L, CHI C F, LIAU S Y. CdS/CdSe Co-Sensitized TiO2 Photoelectrode for efficient hydrogen generation in a Photoelectrochemical Cell[J]. Chem Mater, 2016,22(3):922-927.  

    3. [3]

      MA Y, LIU B, OUYANG B, LI J. Production of hydrogen from water-gas shift reaction over Ru-[BMIM]BF4/ZnO catalyst[J]. Int J Hydrogen Energy, 2016,42(7):4146-4154.  

    4. [4]

      BARRIOS C E, ALBITER E, JIMENEZ J M G Y, TIZNADO H, ROMOHERRERA J, ZANELLA R. Photocatalytic hydrogen production over titania modified by gold-Metal (palladium, nickel and cobalt) catalysts[J]. Int J Hydrogen Energy, 2016,41(48):23287-23300. doi: 10.1016/j.ijhydene.2016.09.206

    5. [5]

      JIAO Y, ZHANG J, DU Y, LI F, LI C, LU C, LU J, WANG J, CHEN Y. Hydrogen production by catalytic steam reforming of hydrocarbon fuels over Ni/Ce-Al2O3, bifunctional catalysts:Effects of SrO addition[J]. Int J Hydrogen Energy, 2016,41(31):13436-13447. doi: 10.1016/j.ijhydene.2016.05.178

    6. [6]

      LU J, LI X, HE S, HAN C, WAN G, LEI Y, CHEN R, LIU P, CHEN K, ZHANG L, LUO Y. Hydrogen production via methanol steam reforming over Ni-based catalysts:Influences of Lanthanum (La) addition and supports[J]. Int J Hydrogen Energy, 2016,42(7):3647-3657.

    7. [7]

      NA Y K, YANG E H, LIM S S, JUNG J S, LEE J S, HONG G H, NOH Y S, LEE K Y, MOON D J. Hydrogen production by steam reforming of methane over mixed Ni/MgAl+CrFe3O4, catalysts[J]. Int J Hydrogen Energy, 2015,40(35):11848-11854. doi: 10.1016/j.ijhydene.2015.06.104

    8. [8]

      WANG C, BOUCHER M, MING Y, SALTSBURG H, MARIA F. ZnO-modified zirconia as gold catalyst support for the low-temperature methanol steam reforming reaction[J]. Appl Catal B:Environ, 2014,154(5):142-152.

    9. [9]

      WANG Yan-hua, ZHANG Jing-chang, XU Heng-yong. Study of Pd/ZnO catalyst for hydrogen production from steam reforming of methanol[J]. J Fuel Chem Technol, 2005,33(4):391-395.  

    10. [10]

      BANESHI J, HAGHIGHI M, JODEIRI N, ABDOUAHIFAR M, AJAMEIN H. Homogeneous precipitation synthesis of CuO-ZrO2 -CeO2 -Al2O3, nanocatalyst used in hydrogen production via methanol steam reforming for fuel cell applications[J]. Energy Convers Manage, 2014,87(9):928-937.

    11. [11]

      AZENHA C S R, MATEOS-PEDRERO C, QUEIRÓ S, CONCEPTION P, MENDES A. Innovative ZrO2-supported CuPd catalysts for the selective production of hydrogen from methanol steam reforming[J]. Appl Catal B:Environ, 2017,203:400-407. doi: 10.1016/j.apcatb.2016.10.041

    12. [12]

      PONGSTABODEE S, MONYANON S, LUENGNARUEMITCHAI A. Hydrogen production via methanol steam reforming over Au/CuO, Au/CeO2, and Au/CuO-CeO2, catalysts prepared by deposition-precipitation[J]. J Ind Eng Chem, 2012,18(4):1272-1279. doi: 10.1016/j.jiec.2012.01.021

    13. [13]

      DESHMANE V G, ABROKWAH R Y, KUILA D. Synthesis of stable Cu-MCM-41 nanocatalysts for H2, production with high selectivity via steam reforming of methanol[J]. Int J Hydrogen Energy, 2015,40(33):10439-10452. doi: 10.1016/j.ijhydene.2015.06.084

    14. [14]

      LI Yong-hong, REN Jie, SUN Yu-han. Effect of iron on Cu/ZrO2 catalysts in production of hydrogen from methanol steam reforming[J]. J Fuel Chem Technol, 2002,30(5):429-432.  

    15. [15]

      NA S, CHU Y, XIN S, WANG Q, YI X, FENG Z, MENG X, LIU X, DENG F, XIAO F. Insights of the Crystallization Process of Molecular Sieve AlPO4-5 Prepared by Solvent-Free Synthesis[J]. J Am Chem Soc, 2016,138(19):6171-6176. doi: 10.1021/jacs.6b01200

    16. [16]

      XU R, ZHU G, YIN X, WAN X, QIU S. Epitaxial growth of highly-oriented AlPO4-5 molecular sieve films for microlaser systems[J]. J Mat Chem, 2006,16(22):2200-2204. doi: 10.1039/b516305f

    17. [17]

      STOEGER J A, VEZIRI C M, PALOMINO M, CORMA A, KANELLOPOULOS N K, TSAPATSIS M, KARANIKOLOS G N. On stability and performance of highly c-oriented columnar AlPO4-5 and CoAPO-5 membranes[J]. Micropor Mesopor Mat, 2012,147(1):286-294. doi: 10.1016/j.micromeso.2011.06.028

    18. [18]

      WEIβÖ , IHLEIN G, SCHVTH F. Synthesis of millimeter-sized perfect AlPO4-5 crystals[J]. Micropor Mesopor Mat, 2000,35(99):617-620.  

    19. [19]

      SHOKRANI R, HAGHIGHI M, JODEIRI N, AJAMEIN H, ABDOLLAHIFAR M. Fuel cell grade hyd-rogen production via methanol steam reforming over CuO/ZnO/Al2O3 nanocatalyst with various oxide ratios synthesized viaurea-nitrates combustion method[J]. Int J Hydrogen Energy, 2014,39(25):13141-13155. doi: 10.1016/j.ijhydene.2014.06.048

    20. [20]

      PARK J E, YIM S D, CHANG S K, PARK E D. Steam reforming of methanol over Cu/ZnO/ZrO2/Al2O3 catalyst. Int J Hydrogen Energy[J]. Int J Hydrogen Energy, 2014,39(22):11517-11527. doi: 10.1016/j.ijhydene.2014.05.130

    21. [21]

      HUANG Yuan-yuan, CHAO Lei, LI Gong, DING Jia, GUO Jian-qiao. Performance of Cu-ZrO2 -CeO2/γ-Al2O3 catalysts for hydrogen production from steam reforming of methanol[J]. Chem Ind Eng Prog, 2017,36(1):216-223.  

    22. [22]

      DONGARE M K, SABDE D P, SHAIKH R A, KAMBLE K R, HEGDE S G. Synthesis, characterization and catalytic properties of ZrAPO-5[J]. Catal Today, 1999,49(49):267-276.  

    23. [23]

      XU Jie, WANG Wen-xiang. The interaction in CuO-Fe2O3 system[J]. Chin J Catal, 1992,13(6):420-424.  

  • 加载中
    1. [1]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    2. [2]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    3. [3]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

    4. [4]

      Xue Liu Lipeng Wang Luling Li Kai Wang Wenju Liu Biao Hu Daofan Cao Fenghao Jiang Junguo Li Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049

    5. [5]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    6. [6]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    7. [7]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    8. [8]

      Xueting Cao Shuangshuang Cha Ming Gong . 电催化反应中的界面双电层:理论、表征与应用. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-. doi: 10.1016/j.actphy.2024.100041

    9. [9]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    10. [10]

      Jie WUZhihong LUOXiaoli CHENFangfang XIONGLi CHENBiao ZHANGBin SHIQuansheng OUYANGJiaojing SHAO . Critical roles of AlPO4 coating in enhancing cycling stability and rate capability of high voltage LiNi0.5Mn1.5O4 cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 948-958. doi: 10.11862/CJIC.20240400

    11. [11]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    12. [12]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    13. [13]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    14. [14]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    15. [15]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102

    16. [16]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    17. [17]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    18. [18]

      Pei Li Yuenan Zheng Zhankai Liu An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012

    19. [19]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    20. [20]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

Metrics
  • PDF Downloads(5)
  • Abstract views(2072)
  • HTML views(555)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return