Citation:
WANG Xiao-lei, DENG Wen-yi, YU Wei-chao, SU Ya-xin. Hydrogen-rich gas formation characteristics during microwave-induced high temperature pyrolysis of sewage sludge[J]. Journal of Fuel Chemistry and Technology,
;2013, 41(2): 243-251.
-
Pyrolysis of sewage sludge was conducted in a single-mode microwave reactor and an electric-heated tube furnace, respectively. The effects of particle size, moisture content, pyrolysis temperature, and structure of microwave receptor on the yield and composition of hydrogen-rich gas were studied. The results indicate that the sludge particle size within 0~5.00 mm has no obvious effect on the mass distribution of pyrolysis products. However, H2 and CO concentrations increase with decreasing of particle size. When the size decreases from 2.50~5.00 mm to <0.45 mm, the H2 concentration increases from 31% to 34%, and that of CO increases from 17% to 22%. Both the sludge moisture content and the pyrolysis temperature have great influences on distribution of the pyrolysis products. Higher moisture content or pyrolysis temperature will lead to markedly higher concentrations of H2 and CO. When the sludge moisture content increases from 0 to 83%, H2 concentration increases from 32% to 42%, and CO concentration increases from 20% to 31%. Microwave absorber in powder phase can transform more volatile compounds into incondensable gas than that in fixed phase, and the concentrations of H2 and CO also increase slightly.
-
Keywords:
- microwave,
- sewage sludge,
- pyrolysis,
- hydrogen
-
-
-
[1]
[1] 毛宗强. 氢能—21世纪的绿色能源[M]. 北京: 化学工业出版社, 2005. (MAO Zong-qiang. Hydrogen energy—green energy in 21st century[M]. Beijing: Chemical Industry Press, 2005.)
-
[2]
[2] 马承荣, 肖波, 陈英明, 江建方, 邹先枚. 生物质气化制取富氢燃气的实验研究[J]. 燃烧科学与技术, 2007, 13(5): 461-467. (MA Cheng-rong, XIAO Bo, CHEN Ying-ming, JIANG Jian-fang, ZOU Xian-mei. Experimental research on biomass gasification for hydrogen rich gas production[J]. Journal of Combustion Science and Technology, 2007, 13(5): 461-467.)
-
[3]
[3] DENG W-Y, YAN J-H, LI X-D, WANG F, ZHU X-W, LU S-Y, CEN K-F. Emission characteristics of volatile compounds during sludges drying process[J]. J Hazard Mater, 2009, 162(1): 186-192.
-
[4]
[4] 戴晓虎. 我国城镇污泥处理处置现状及思考[J]. 给水排水, 2012, 38(2): 1-5. (DAI Xiao-hu. Treatment status of urban sludge in China[J]. Water Supply and Drainage, 2012, 38(2): 1-5.)
-
[5]
[5] 张钦明, 王树众, 沈林华, 段百齐. 污泥制氢技术研究进展[J]. 现代化工, 2005, 25(11): 29-32. (ZHANG Qin-ming, WANG Shu-zhong, SHEN Lin-hua, DUAN Bai-qi. Advances in production of hydrogen from sludge[J]. Modern Chemical Industry, 2005, 25(11): 29-32.)
-
[6]
[6] 丁兆军, 舒新前, 白广彬. 城市污水污泥热解制氢的实验研究[J]. 武汉理工大学学报, 2006, 28(增刊): 228-232. (DING Zhao-jun, SHU Xin-qian, BAI Guang-bin. Experimental study on hydrogen production via sewage sludge pyrolysis[J]. Journal of Wuhan University of Technology, 2006, 28(zl): 228-232.)
-
[7]
[7] MENENDEZ J A, DOMINGUEZ A, INGUANZO M, PIS J J. Microwave-induced drying, pyrolysis and gasification (MWDPG) of sewage sludge: Vitrification of the solid residue[J]. J Anal Appl Pyrolysis, 2005, 74(1/2): 406-412.
-
[8]
[8] DOMINGUEZ A, MENENDEZ J A, INGUANZO M, PIS J J. Production of bio-fuels by high temperature pyrolysis of sewage sludge using conventional and microwave heating[J]. Bioresour Technol, 2006, 97(10): 1185-1193.
-
[9]
[9] DOMINGUEZ A, FERNANDEZ Y, FIDALGO B. Bio-syngas production with low concentrations of CO2 and CH4 from microwave-induced pyrolysis of wet and dried sewage sludge[J]. Chemosphere, 2008, 70(3): 397~403.
-
[10]
[10] 王同华, 胡俊生, 夏莉, 曲新春. 微波热解污泥及产物组成的分析[J]. 沈阳建筑大学学报(自然科学版), 2008, 24(4): 662-666. (WANG Tong-hua, HU Jun-sheng, XIA Li, QU Xin-chun. Pyrolysis of sewage sludge by microwave radiation[J]. Journal of Shenyang Jianzhu University (Natural Science), 2008, 24(4): 662-666.)
-
[11]
[11] 方琳, 田禹, 武伟男, 曹长玉. 微波高温热解污水污泥各态产物特性分析[J]. 安全与环境学报, 2008, 8(1): 29-33. (FANG Lin, TIAN Yu, WU Wei-nan, CAO Chang-yu. Characteristic study of the solid, liquid and gas produced by microwave pyrolysis of sewage sludge[J]. Journal of Safety and Environment, 2008, 8(1): 29-33.)
-
[12]
[12] DEMIRGAS A. Gaseous products from biomass by pyrolysis and gasification: Effects of catalyst on hydrogen yield[J]. Energy Convers Manage, 2002, 43(7): 897-909.
-
[13]
[13] 王伟, 蓝煜昕, 李明, 郑蕾, 刘世杰, 程文翰. 生物质废弃物快速热解制取富氢气体的实验研究[J]. 环境工程学报, 2007, 1(8): 114-119. (WANG Wei, LAN Yu-xin, LI Ming, ZHENG Lei, LIU Shi-jie, CHENG Wen-han. Fast pyrolysis of biomass waste for hydrogen-rich gas[J]. Chinese Journal of Environmental Engineering, 2007, 1(8): 114-119.)
-
[14]
[14] LI S, XU S, LIU S, YANG C, LU Q. Fast pyrolysis of biomass in free-fall reactor for hydrogen-rich gas[J]. Fuel Process Technol, 2004, 85(8/10): 1201-1211.
-
[15]
[15] DOMINGUEZ A, MENENDEZ J A, FERNANDEZ Y, PIS J J, VALENTE NABAIS J M, CARROTT J M, RIBEIRO CARROTT M M L. Conventional and microwave induced pyrolysis of coffee hulls for the production of hydrogen rich fuel gas[J]. J Anal Appl Pyrolysis, 2007, 79(1/2): 128-135.
-
[16]
[16] XU X, JIANG E, WANG M, LI B. Rich hydrogen production from crude gas secondary catalytic cracking over Fe/γ-Al2O3[J]. Renewable Energy, 2012, 39(1): 126-131.
-
[17]
[17] DOMINGUEZ A, MENENDEZ J A, PIS J J. Hydrogen rich fuel gas production from the pyrolysis of wet sewage sludge at high temperature[J]. J Anal Appl Pyrolysis, 2006, 77(2): 127-132.
-
[18]
[18] SUN J, WANG W, LIU Z, MA C. Recycling of waste printed circuit boards by microwave-induced pyrolysis and featured mechanical processing[J]. Ind Eng Chem Res, 2011, 50(20): 11763-11769.
-
[19]
[19] MENENDEZ J A, DOMINGUEZ A, INGUANZO M, PIS J J. Microwave pyrolysis of sewage sludge: Analysis of the gas fraction[J]. J Anal Appl Pyrolysis, 2004, 71(2): 657-667.
-
[1]
-
-
-
[1]
Yuena Yu , Fang Fang . Microwave-Assisted Synthesis of Safinamide Methanesulfonate. University Chemistry, 2024, 39(11): 210-216. doi: 10.3866/PKU.DXHX202401076
-
[2]
Min LI , Xianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065
-
[3]
Hao Wu , Zhen Liu , Dachang Bai . 1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020
-
[4]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[5]
Yang Lv , Yingping Jia , Yanhua Li , Hexiang Zhong , Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059
-
[6]
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
-
[7]
Jianyin He , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030
-
[8]
Wenxiu Yang , Jinfeng Zhang , Quanlong Xu , Yun Yang , Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014
-
[9]
Yue Zhao , Yanfei Li , Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001
-
[10]
Ran Yu , Chen Hu , Ruili Guo , Ruonan Liu , Lixing Xia , Cenyu Yang , Jianglan Shui . 杂多酸H3PW12O40高效催化MgH2储氢. Acta Physico-Chimica Sinica, 2025, 41(1): 2308032-. doi: 10.3866/PKU.WHXB202308032
-
[11]
Linjie ZHU , Xufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207
-
[12]
Yu'ang Liu , Yuechao Wu , Junyu Huang , Tao Wang , Xiaohong Liu , Tianying Yan . Computation of Absolute Electrode Potential of Standard Hydrogen Electrode Using Ab Initio Method. University Chemistry, 2025, 40(3): 215-222. doi: 10.12461/PKU.DXHX202407112
-
[13]
Yongwei ZHANG , Chuang ZHU , Wenbin WU , Yongyong MA , Heng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386
-
[14]
Xuejie Wang , Guoqing Cui , Congkai Wang , Yang Yang , Guiyuan Jiang , Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044
-
[15]
Junqing WEN , Ruoqi WANG , Jianmin ZHANG . Regulation of photocatalytic hydrogen production performance in GaN/ZnO heterojunction through doping with Li and Au. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 923-938. doi: 10.11862/CJIC.20240243
-
[16]
Haodong JIN , Qingqing LIU , Chaoyang SHI , Danyang WEI , Jie YU , Xuhui XU , Mingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048
-
[17]
Limei CHEN , Mengfei ZHAO , Lin CHEN , Ding LI , Wei LI , Weiye HAN , Hongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312
-
[18]
Wenjiang LI , Pingli GUAN , Rui YU , Yuansheng CHENG , Xianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289
-
[19]
Bo YANG , Gongxuan LÜ , Jiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346
-
[20]
Juan WANG , Zhongqiu WANG , Qin SHANG , Guohong WANG , Jinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102
-
[1]
Metrics
- PDF Downloads(561)
- Abstract views(987)
- HTML views(14)