Citation: MEI Dao-feng, ZHAO Hai-bo, MA Zhao-jun, YANG Wei-jin, FANG Yan-fei, ZHENG Chu-guang. Oxygen release kinetics and mechanism study on Cu-, Co-, Mn-based oxygen carrier[J]. Journal of Fuel Chemistry and Technology, ;2013, 41(2): 235-242. shu

Oxygen release kinetics and mechanism study on Cu-, Co-, Mn-based oxygen carrier

  • Corresponding author: ZHAO Hai-bo, 
  • Received Date: 6 August 2012
    Available Online: 12 October 2012

    Fund Project: 国家自然科学基金(50721005, 50936001) (50721005, 50936001) 教育部新世纪优秀人才支持计划(NCET-10-0395)。 (NCET-10-0395)

  • Sol-gel derived CuO/CuAl2O4, Co3O4/CoAl2O4 and Mn2O3/Al2O3 oxygen carriers were studied in a fluidized bed reactor under CO2 atmosphere, where the oxygen release characteristics under different temperatures were focused. The mechanism function and kinetics parameters in the oxygen release were obtained from the experimental data. In the process of oxygen release, the phases of CuO and CuAl2O4 performing as active components decompose to Cu2O and CuAlO2 with O2 generation. While, only Co3O4 and Mn2O3 can release oxygen in Co3O4/CoAl2O4 and Mn2O3/Al2O3 oxygen carriers, in which Co3O4 and Mn2O3 are respectively reduced to CoO and Mn3O4; and CoAl2O4 and Al2O3 perform as inert carrier. The kinetic analysis show that the oxygen release of three oxygen carriers can be described by the nucleation and nuclei growth model. This means that after O2 release the Cu-O bond (as an example) in the oxygen carrier is broken, generates Cu2O active sites diffusing away from the reduction centers, and comes together to form Cu2O clusters. The mechanism function G(x), the activation energy and the pre-exponential factor have different expressions or different values for different oxygen carriers. The activation energies in the oxygen release of CuO/CuAl2O4, Co3O4/CoAl2O4 and Mn2O3/Al2O3 oxygen carriers, are 226.37, 130.06 and 65.90 kJ/mol respectively; and the pre-exponential factors are 2.99×106 s-1, 4.96×103 s-1 and 27.37 s-1 respectively.
  • 加载中
    1. [1]

      [1] XIONG J, ZHAO H, ZHENG C, LIU Z, ZENG L, LIU H, QIU J. An economic feasibility study of O2/CO2 recycle combustion technology based on existing coal-fired power plants in China[J]. Fuel, 2009, 88(6): 1135-1142.

    2. [2]

      [2] LYNGFELT A, MATTISSON T. Trestegsförbränning för avskiljning av koldioxid. Sweden, 2005.

    3. [3]

      [3] ABAD A, ADÁNEZ-RUBIO I, GAYÁN P, GARCÍA-LABIANO F, DIEGO L F, ADÁNEZ J. Demonstration of chemical-looping with oxygen uncoupling (CLOU) process in a 1.5kWth continuously operating unit using a Cu-based oxygen-carrier[J]. Int. J. of Greenh. Gas Con., 2012, 6(1): 189-200.

    4. [4]

      [4] MATTISSON T, LYNGFELT A, LEION H. Chemical-looping with oxygen uncoupling for combustion of solid fuels[J]. Int. J. Greenh. Gas Con., 2009, 3(1): 11-19.

    5. [5]

      [5] LEION H, MATTISSON T, LYNGFELT A. Using chemical-looping with oxygen uncoupling (CLOU) for combustion of six different solid fuels[J]. Energy Procedia, 2009, 1(1): 447-453.

    6. [6]

      [6] LEION H, MATTISSON T, LYNGFELT A. Chemical Looping Combustion of Solid Fuels in a Laboratory Fluidized-bed Reactor[J]. Oil & Gas Science and Technology–Revue d’IFP Energies nouvelles, 2011, 66(2): 201-208.

    7. [7]

      [7] ADÁNEZ-RUBIO I, GAYÁN P, GARCÍA-LABIANO F, DIEGO L F, ADNEZ J, ABAD A. Development of CuO-based oxygen-carrier materials suitable for Chemical-Looping with Oxygen Uncoupling (CLOU) process[J]. Energy Procedia, 2011, 4(1): 417-424.

    8. [8]

      [8] GAYÁN P, ADÁNEZ-RUBIO I, ABAD A, DIEGO L F, GARCÍA-LABIANO F, ADÁNEZ J. Development of Cu-based oxygen carriers for Chemical-Looping with Oxygen Uncoupling (CLOU) process[J]. Fuel, 2012, 96(1): 226-238.

    9. [9]

      [9] ARJMAND M, AZAD A, LEION H, LYNGFELT A, MATTISSON T. Prospects of Al2O3 and MgAl2O4-Supported CuO Oxygen Carriers in Chemical-Looping Combustion (CLC) and Chemical-Looping with Oxygen Uncoupling (CLOU)[J]. Energy Fuels, 2011, 25(11): 5493-5502.

    10. [10]

      [10] WEN Y, LI Z, XU L, CAI N. Experimental Study of Natural Cu Ore Particles as Oxygen Carriers in Chemical Looping with Oxygen Uncoupling (CLOU)[J]. Energy Fuels, 2012, 26(6): 3919-3927.

    11. [11]

      [11] LI Z, ZHANG T, CAI N. Experimental Study of O2-CO2 Production for the Oxyfuel Combustion Using a Co-Based Oxygen Carrier[J]. Ind. Eng. Chem. Res., 2008, 47(19): 7147-7153.

    12. [12]

      [12] ZHANG T, LI Z, CAI N. Continuous O2-CO2 production using a Co-based oxygen carrier in two parallel fixed-bed reactors[J]. Korean J. Chem. Eng., 2009, 26(3): 845-849.

    13. [13]

      [13] SHULMAN A, CLEVERSTAM E, MATTISSON T, LYNGFELT A. Manganese/Iron, Manganese/Nickel, and Manganese/Silicon Oxides Used in Chemical-Looping With Oxygen Uncoupling (CLOU) for Combustion of Methane[J]. Energy Fuels, 2009, 23(10): 5269-5275.

    14. [14]

      [14] AZIMI G., LEION H, MATTISSON T, LYNGFELT A. Chemical-looping with oxygen uncoupling using combined Mn-Fe oxides, testing in batch fluidized bed[J]. Energy Procedia, 2011, 4(1): 370-377.

    15. [15]

      [15] 梅道锋, 赵海波, 马兆军, 郑楚光. Fe2O3/Al2O3 氧载体制备方法的研究[J]. 燃料化学学报, 2012, 40(7): 795-802. MEI Dao-feng, ZHAO Hai-bo, MA Zhao-jun, ZHENG Chu-guang. Preparation method study on Fe2O3/Al2O3 oxygen carrier[J]. Journal of Fuel Chemistry and Technology, 2012, 40(7): 795-802.

    16. [16]

      [16] 赵海波, 刘黎明, 徐迪, 郑楚光, 刘国军, 蒋林林. 气体燃料化学链燃烧技术中的溶胶凝胶Ni基氧载体研究[J]. 燃料化学学报, 2008, 36(3): 261-266. ZHAO Hai-bo, LIU Li-ming, XU Di, ZHENG Chu-guang, LIU Guo-jun, JIANG Lin-lin. NiO/NiAl2O4 oxygen carriers prepared by sol-gel for chemical-looping combustion fueled by gas[J]. Journal of Fuel Chemistry and Technology, 2008, 36(3): 261-266.

    17. [17]

      [17] 胡荣祖, 高胜利, 赵凤起, 史启祯, 张同来, 张建军. 热分析动力学[M]. 北京: 科学出版社, 2008. 127-131. HU Rong-zhu, GAO Sheng-li, ZHAO Feng-qi, SHI Qi-zhen, ZHANG Tong-lai, ZHANG Jian-jun. Thermal Analysis Kinetics[M]. Beijing: Science Press, 2008. 127-131.

  • 加载中
    1. [1]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

    2. [2]

      Guowen Xing Guangjian Liu Le Chang . Five Types of Reactions of Carbonyl Oxonium Intermediates in University Organic Chemistry Teaching. University Chemistry, 2025, 40(4): 282-290. doi: 10.12461/PKU.DXHX202407058

    3. [3]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    4. [4]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    5. [5]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    6. [6]

      Jinfeng Chu Yicheng Wang Ji Qi Yulin Liu Yan Li Lan Jin Lei He Yufei Song . Comprehensive Chemical Experiment Design: Convenient Preparation and Characterization of an Oxygen-Bridged Trinuclear Iron(III) Complex. University Chemistry, 2024, 39(7): 299-306. doi: 10.3866/PKU.DXHX202310105

    7. [7]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    8. [8]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    9. [9]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    10. [10]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    11. [11]

      Hongxia Yan Rui Wu Weixu Feng Yan Zhao Yi Yan . Innovation Inspired by Classical Chemistry: Luminescent Hyperbranched Polysiloxanes. University Chemistry, 2025, 40(4): 154-159. doi: 10.12461/PKU.DXHX202409010

    12. [12]

      Pengzi Wang Wenjing Xiao Jiarong Chen . Copper-Catalyzed C―O Bond Formation by Kharasch-Sosnovsky-Type Reaction. University Chemistry, 2025, 40(4): 239-244. doi: 10.12461/PKU.DXHX202406090

    13. [13]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    14. [14]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    15. [15]

      Pengcheng Yan Peng Wang Jing Huang Zhao Mo Li Xu Yun Chen Yu Zhang Zhichong Qi Hui Xu Henan Li . Engineering Multiple Optimization Strategy on Bismuth Oxyhalide Photoactive Materials for Efficient Photoelectrochemical Applications. Acta Physico-Chimica Sinica, 2025, 41(2): 100014-. doi: 10.3866/PKU.WHXB202309047

    16. [16]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    17. [17]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    18. [18]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    19. [19]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    20. [20]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

Metrics
  • PDF Downloads(634)
  • Abstract views(1054)
  • HTML views(74)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return