Citation: Hussein Abou-Yousef, El Barbary Hassan, Philip Steele. Rapid conversion of cellulose to 5-hydroxymethylfurfural using single and combined metal chloride catalysts in ionic liquid[J]. Journal of Fuel Chemistry and Technology, ;2013, 41(2): 214-222. shu

Rapid conversion of cellulose to 5-hydroxymethylfurfural using single and combined metal chloride catalysts in ionic liquid

  • Received Date: 21 October 2012
    Available Online: 17 December 2012

    Fund Project: U. S. DOE through Sustainable Energy Research Center (SERC) at Mississippi State University (DE-FG36-06GO86025). (SERC) at Mississippi State University (DE-FG36-06GO86025)

  • Direct conversion of cellulose into 5-hydroxymethylfurfural (HMF) was performed by using single or combined metal chloride catalysts in 1- ethyl-3-methylimidazolium chloride (Cl) ionic liquid. Our study demonstrated formation of 2-furyl hydroxymethyl ketone (FHMK), and furfural (FF) simultaneously with the formation of HMF. Various reaction parameters were addressed to optimize yields of furan derivatives produced from cellulose by varying reaction temperature, time, and the type of metal chloride catalyst. Catalytic reaction by using FeCl3 resulted in 59.9% total yield of furan derivatives (HMF, FHMK, and FF) from cellulose. CrCl3 was the most effective catalyst for selective conversion of cellulose into HMF (35.6%) with less concentrations of FHMK, and FF. Improving the yields of furans produced from cellulose could be achieved via reactions catalyzed by different combinations of two metal chlorides. Further optimization was carried out to produce total furans yield 75.9% by using FeCl3/CuCl2 combination. CrCl3/CuCl2 was the most selective combination to convert cellulose into HMF (39.9%) with total yield (63.8%) of furans produced from the reaction. The temperature and time of the catalytic reaction played an important role in cellulose conversion, and the yields of products. Increasing the reaction temperature could enhance the cellulose conversion and HMF yield for short reaction time intervals (5~20 min).
  • 加载中
    1. [1]

      [1] PETER R A. Oil supply challenges -1: The non-OPEC decline[J]. Oil Gas J, 2005, 103(7): 20-28.

    2. [2]

      [2] PARIKKA M. Global biomass fuel resources[J]. Biomass Bioenergy, 2004, 27(6): 613-620.

    3. [3]

      [3] RAGAUSKAS A J, WILLIAMS C K, DAVISON B H, BRITOVSEK G, CAIRNEY J, ECKERT C A, FREDERICK Jr. J W, HALLETT J P, LEAK D J, LIOTTA C L, MIELENZ J R, MURPHY R, TEMPLER R, TSCHAPLINSKI T. The path forward for biofuels and biomaterials[J]. Science, 2006, 311(5760): 484-489.

    4. [4]

      [4] CORMA A, IBORRA S, VELTY A. Chemical routes for the conversion of biomass into chemicals[J]. Chem Rev, 2007, 107(6): 2411-2502.

    5. [5]

      [5] AIDA T M, SATO Y, WATANABE M, TAJIMA K, NONAKA T, HATTORI H, ARAI K. Dehydration of d-glucose in high temperature water at pressures up to 80 MPa[J]. J Supercrit Fluids, 2007, 40(3): 381-388.

    6. [6]

      [6] BINDER J B, RAINES RT. Simple chemical conversion of lignocellulosic biomass into furans for fuels and chemicals[J]. J Am Chem Soc, 2009, 131(5): 1979-1985.

    7. [7]

      [7] GANDINI A. Furans as offspring of sugars and polysaccharides and progenitors of a family of remarkable polymers: a review of recent progress[J]. Polym Chem, 2010, 1(3): 245-251.

    8. [8]

      [8] HUBER G W, JUBEN N C, BARRETT C J, DUMESIC J A. Production of liquid alkanes by aqueous-phase processing of biomass-derived carbohydrates[J]. Science, 2005, 308(5727): 1446-1450.

    9. [9]

      [9] CHHEDA J N, ROMAN-LESHKOV Y, DUMESIC J A. Production of 5, hydroxymethylfurfural and furfural by dehydration of biomass-derived mono-and poly-saccharides[J]. Green Chem, 2007, 9(4): 342-350.

    10. [10]

      [10] MOSIER N S, LADISCH C M. Characterization of acid catalytic domains for cellulose hydrolysis and glucose degradation[J]. Biotechnol Bioeng, 2002, 79(6): 610-618.

    11. [11]

      [11] ROMAN-LESHKOV Y, BARRETT C J, LIU Z Y, DUMESIC J A. Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates[J]. Nature, 2007, 447(7147): 982-986.

    12. [12]

      [12] HU S, ZHANG Z, ZHOU Y, SONG J, FAN H, HAN B. Direct conversion of inulin to 5-hydroxymethylfurfural in biorenewable ionic liquids[J]. Green Chem, 2009, 11(6): 873-877.

    13. [13]

      [13] ZAKRZEWSKA M E, BOGEL-LUKASIK E, BOGEL-LUKASIK R. Ionic-liquid mediated formation of 5-hydroxymethylfurfural - A promising biomass-derived building block[J]. Chem Rev, 2011, 111(2): 397-417.

    14. [14]

      [14] SU Y, BROWN H M, HUANG X, ZHOU X-D, AMONETTE J E, CONRAD ZHANG Z. Single-step conversion of cellulose to 5-hydroxymethylfurfural(HMF), a versatile platform chemical[J]. Appl Catal A, 2009, 361(1/2): 117-122.

    15. [15]

      [15] ILGEN F, OTT D, KRALISCH D, REIL C, PALMBERG A, KNIG B. Conversion of carbohydrates into 5-hydroxymethylfurfural in highly concentrated low melting mixtures" [J]. Green Chem, 2009, 11(12): 1948-1954.

    16. [16]

      [16] MOREAU C, FINIELS A, VANOVE l. Dehydration of fructose and sucrose into 5-hydroxymethylfurfural in the presence of 1-H-3-methyl imidazolium chloride acting both as solvent and catalyst[J]. J Mol Catal A, 2006, 253(1/2): 165-169.

    17. [17]

      [17] KUSTER B F M. 5-hydroxymethylfurfural (HMF). "A review focusing on its manufacture" [J]. Starch/Staerke, 1990, 42(8): 314-321.

    18. [18]

      [18] ZHANG Z, ZHAO Z K. Microwave-assisted conversion of lignocellulosic biomass into furans in ionic liquid[J]. Bioresour Technol, 2010, 101(3): 1111-1114.

    19. [19]

      [19] ZHANG H, HOLLADAY J E, BROWN H, CONRAD ZHANG Z . Metal chlorides in ionic liquid solvents convert sugars to hydroxymethylfurfural[J]. Science, 2007, 316(5831): 1597-1600.

    20. [20]

      [20] SLUITER A, HAMES B, RUIZ R, SCARLATA C, SLUITER J, TEMPLETON D. Determination of Sugars, Byproducts, and Degradation Products in Liquid Fraction Process Samples. National Renewable Energy Laboratory (NREL), 2008.

    21. [21]

      [21] CHIDAMBARAM M, ALEXIS T B. a two approach for the catalytic conversion of glucose to 2,5- dimethylfuran in ionic liquids[J]. Green Chem, 2010, 12(7): 1253- 1262.

    22. [22]

      [22] HEINZE T, SCHWIKAL K, BARTHEL S. Ionic liquids as reaction medium in cellulose functionalization[J]. Macromol Biosci, 2005, 5(6): 520- 525.

    23. [23]

      [23] REMSING R, SWATLSKI R, ROGERS R D, MOYNA G. Mechnism of cellulose dissolution in ionic liquid 1-n- butyl -3- methylimidiazoluim chloride: A13C and35/37Cl NMR relaxation study on model system[J]. Chem Commun, 2006, 12: 1271-1273.

    24. [24]

      [24] DYNES R C, ROWELL J M. Influence of electrons-per-atom ratio and phonon frequencies on the superconducting transition temperature of lead alloys[J]. Phys Rev B, 1975, 11(5): 1884-1894.

  • 加载中
    1. [1]

      Hao-Cong LiMing ZhangQiyan LvKai SunXiao-Lan ChenLingbo QuBing Yu . Homogeneous catalysis and heterogeneous separation: Ionic liquids as recyclable photocatalysts for hydroacylation of olefins. Chinese Chemical Letters, 2025, 36(2): 110579-. doi: 10.1016/j.cclet.2024.110579

    2. [2]

      Xiaoning LiQuanyu ShiMeng LiNingxin SongYumeng XiaoHuining XiaoTony D. JamesLei Feng . Functionalization of cellulose carbon dots with different elements (N, B and S) for mercury ion detection and anti-counterfeit applications. Chinese Chemical Letters, 2024, 35(7): 109021-. doi: 10.1016/j.cclet.2023.109021

    3. [3]

      Yatian DengDao WangJinglan ChengYunkun ZhaoZongbao LiChunyan ZangJian LiLichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141

    4. [4]

      Li LiZhi-Xin YanChuan-Kun RanYi LiuShuo ZhangTian-Yu GaoLong-Fei DaiLi-Li LiaoJian-Heng YeDa-Gang Yu . Electro-reductive carboxylation of CCl bonds in unactivated alkyl chlorides and polyvinyl chloride with CO2. Chinese Chemical Letters, 2024, 35(12): 110104-. doi: 10.1016/j.cclet.2024.110104

    5. [5]

      Beitong ZhuXiaorui YangLirong JiangTianhong ChenShuangfei WangLintao Zeng . A portable and versatile fluorescent platform for high-throughput screening of toxic phosgene, diethyl chlorophosphate and volatile acyl chlorides. Chinese Chemical Letters, 2025, 36(1): 110222-. doi: 10.1016/j.cclet.2024.110222

    6. [6]

      Jiayuan Liang Xin Mi Songhao Guo Hui Luo Kejun Bu Tonghuan Fu Menglin Duan Yang Wang Qingyang Hu Rengen Xiong Peng Qin Fuqiang Huang Xujie Lü . Pressure-induced emission in 0D metal halide (EATMP)SbBr5 by regulating exciton-phonon coupling. Chinese Journal of Structural Chemistry, 2024, 43(7): 100333-100333. doi: 10.1016/j.cjsc.2024.100333

    7. [7]

      Yixia ZhangCaili XueYunpeng ZhangQi ZhangKai ZhangYulin LiuZhaohui ShanWu QiuGang ChenNa LiHulin ZhangJiang ZhaoDa-Peng Yang . Cocktail effect of ionic patch driven by triboelectric nanogenerator for diabetic wound healing. Chinese Chemical Letters, 2024, 35(8): 109196-. doi: 10.1016/j.cclet.2023.109196

    8. [8]

      Pei CaoYilan WangLejian YuMiao WangLiming ZhaoXu Hou . Dynamic asymmetric mechanical responsive carbon nanotube fiber for ionic logic gate. Chinese Chemical Letters, 2024, 35(6): 109421-. doi: 10.1016/j.cclet.2023.109421

    9. [9]

      Qiangwei WangHuijiao LiuMengjie WangHaojie ZhangJianda XieXuanwei HuShiming ZhouWeitai Wu . Observation of high ionic conductivity of polyelectrolyte microgels in salt-free solutions. Chinese Chemical Letters, 2024, 35(4): 108743-. doi: 10.1016/j.cclet.2023.108743

    10. [10]

      Tong ZhangXiaojing LiangLicheng WangShuai WangXiaoxiao LiuYong Guo . An ionic liquid assisted hydrogel functionalized silica stationary phase for mixed-mode liquid chromatography. Chinese Chemical Letters, 2025, 36(1): 109889-. doi: 10.1016/j.cclet.2024.109889

    11. [11]

      Jiajia WangXinXin GeYajing XiangXiaoliang QiYing LiHangbin XuErya CaiChaofan ZhangYulong LanXiaojing ChenYizuo ShiZhangping LiJianliang Shen . An ionic liquid functionalized sericin hydrogel for drug-resistant bacteria-infected diabetic wound healing. Chinese Chemical Letters, 2025, 36(2): 109819-. doi: 10.1016/j.cclet.2024.109819

    12. [12]

      Congyan LiuXueyao ZhouFei YeBin JiangBo Liu . Confined electric field in nano-sized channels of ionic porous framework towards unique adsorption selectivity. Chinese Chemical Letters, 2025, 36(2): 109969-. doi: 10.1016/j.cclet.2024.109969

    13. [13]

      Jingyu ShiXiaofeng WuYutong ChenYi ZhangXiangyan HouRuike LvJunwei LiuMengpei JiangKeke HuangShouhua Feng . Structure factors dictate the ionic conductivity and chemical stability for cubic garnet-based solid-state electrolyte. Chinese Chemical Letters, 2025, 36(5): 109938-. doi: 10.1016/j.cclet.2024.109938

    14. [14]

      Yuhao ZhouSiyuan WuXiaozhe RenHongjin LiShu LiTianying Yan . Effects of salt fraction on the Na+ transport in salt-in-ionic liquid electrolytes. Chinese Chemical Letters, 2025, 36(6): 110048-. doi: 10.1016/j.cclet.2024.110048

    15. [15]

      Hao ZhangHao LiuKe HuangQingxiu XiaHongjie XiongXiaohui LiuHui JiangXuemei Wang . Ionic exchange based intracellular self-assembly of pitaya-structured nanoparticles for tumor imaging. Chinese Chemical Letters, 2025, 36(6): 110281-. doi: 10.1016/j.cclet.2024.110281

    16. [16]

      Luyu ZhangZirong DongShuai YuGuangyue LiWeiwen KongWenjuan LiuHaisheng HeYi LuWei WuJianping Qi . Ionic liquid-based in situ dynamically self-assembled cationic lipid nanocomplexes (CLNs) for enhanced intranasal siRNA delivery. Chinese Chemical Letters, 2024, 35(7): 109101-. doi: 10.1016/j.cclet.2023.109101

    17. [17]

      Zhenyu HuZhenchun YangShiqi ZengKun WangLina LiChun HuYubao Zhao . Cationic surface polarization centers on ionic carbon nitride for efficient solar-driven H2O2 production and pollutant abatement. Chinese Chemical Letters, 2024, 35(10): 109526-. doi: 10.1016/j.cclet.2024.109526

    18. [18]

      Yayun ShiCongcong LiuZhijun ZuoXiaowei Yang . Self-assembled ultrathick MoS2 conductive hydrogel membrane via ionic gelation for superior capacitive energy storage. Chinese Chemical Letters, 2025, 36(6): 109772-. doi: 10.1016/j.cclet.2024.109772

    19. [19]

      Jingjing ZhangLan DingVadim PopkovKezhen Qi . Aqueous indium metal batteries. Chinese Chemical Letters, 2025, 36(2): 110407-. doi: 10.1016/j.cclet.2024.110407

    20. [20]

      Aimin FuChunmei ChenQin LiNanjin DingJiaxin DongYu ChenMengsha WeiWeiguang SunHucheng ZhuYonghui Zhang . Niduenes A−F, six functionalized sesterterpenoids with a pentacyclic 5/5/5/5/6 skeleton from endophytic fungus Aspergillus nidulans. Chinese Chemical Letters, 2024, 35(9): 109100-. doi: 10.1016/j.cclet.2023.109100

Metrics
  • PDF Downloads(522)
  • Abstract views(1274)
  • HTML views(53)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return