Citation: JIA Jie, SUI Sheng, ZHU Xin-jian, HUANG Bo. Effect of kinetic factors on hydrogen production by coal slurry electrolysis[J]. Journal of Fuel Chemistry and Technology, ;2013, 41(2): 139-143. shu

Effect of kinetic factors on hydrogen production by coal slurry electrolysis

  • Corresponding author: SUI Sheng, 
  • Received Date: 6 August 2012
    Available Online: 8 October 2012

  • For understanding the influence of kinetic factors on coal slurry electrolysis, the voltage, temperature, and H2SO4 and Fe3+ concentration were studied. The samples of electrolyzed coal and fresh coal, and composition of the supernatant liquid after electrolysis were analyzed respectively by TGA and ICP. The results show that the parameters of voltage, temperature, Fe3+ and H2SO4 concentration have effect on the current density in the electrolysis. Furthermore, the relationship between the temperature and current density follows the Arrhenius equation. The apparent activation energy of the coal slurry electrolysis is 31.87 kJ/mol at 1 V voltage. TGA and ICP characterization prove that some metal elements in the coal are dissolved into the solution. The coal structure and ash content have obvious difference before and after the electrolysis.
  • 加载中
    1. [1]

      [1] COUGHLIN R W, FAROOQUE M. Hydrogen production from coal, water and electrons[J]. Nature (London), 1979, 279(5711): 301-303.

    2. [2]

      [2] PATIL P, BOTTE G G. 206th Electrochemical Society Meeting// Hawaii:The Electrochemical Society Inc, 2004: 559-565.

    3. [3]

      [3] PATIL P, ABREU Y D, BOTTE G G. Electrooxidation of coal slurries on different electrode materials[J]. J Power Sources, 2006, 158(1): 368-377.

    4. [4]

      [4] SATHE N, BOTTE G G. Assessment of coal and graphite electrolysis on carbon fiber electrodes[J]. J Power Sources, 2006, 161(1): 513-523.

    5. [5]

      [5] 印仁和, 吕士银, 姬学彬, 洪亮铭, 曹为民, 张新胜. 电解煤浆制氢阳极的制备及电催活性研究[J]. 化学学报, 2007, 65(24): 2847-2852. (YIN Ren-he, LÜ Shi-yin, JI Xue-bin, HONG Liang-ming, CAO Wei-min, ZHANG Xin-sheng. Preparation of the catalytic electrodes and study on their catalytic activity for electro-oxidation of coal slurry[J]. Acta Chim Sinica, 2007, 65(24): 2847-2852.)

    6. [6]

      [6] 成旦红, 洪亮铭, 吕士银, 姬学彬, 印仁和. 电解煤浆制氢钛基阳极铂铁合金催化剂的制备及电催化活性研究[J]. 化学学报, 2008, 66(5): 511-514. (CHENG Dan-hong, HONG Liang-ming, LV Shi-yin, JI Xue-bin, YIN Ren-he. Preparation of the Ti/Pt-Fe anode catalyst and its catalytic activity for electro-oxidation of coal slurry[J]. Acta Chim Sinica, 2008, 66(5): 511-514.)

    7. [7]

      [7] 印仁和, 赵永刚, 吕士银, 刘怀有, 曹为民.热分解法制备电解煤浆用阳极及其电催化活性[J]. 应用化学, 2010, 27(2): 215-219. (YIN Ren-he, ZHAO Yong-gang, LV Shi-yin, LIU Huai-you, CAO Wei-min. Preparation of anode for electrolysis of coal slurry by thermal decomposition and its electrocatalytic activities[J].Chinese Journal of Applied Chemistry, 2010, 27(2): 215-219.)

    8. [8]

      [8] YIN R, JI X, ZHANG L, LU S, CAO W, FAN Q. Multilayer nano Ti/TiO2 Pt electrode for coal-hydrogen production[J]. J Electrochem Soc, 2007, 154(12): D637-D641.

    9. [9]

      [9] HESENOV A, KINIK H, PULI G, GZMEN B, IRMAK S, ERBATUR O. Electrolysis of coal slurries to produce hydrogen gas: Relationship between CO2 and H2 formation[J]. Int J Hydrogen Energy, 2011, 36(9): 5361-5368.

    10. [10]

      [10] HESENOV A, MERYEMOGLU B, ITEN O. Electrolysis of coal slurries to produce hydrogen gas: Effects of different factors on hydrogen yield[J]. Int J Hydrogen Energy, 2011, 36(19): 12249-12258.

    11. [11]

      [11] JIN X, BOTTE G G. Understanding the kinetics of coal electrolysis at intermediate temperatures[J]. J Power Sources, 2010, 195(15): 4935-4942.

    12. [12]

      [12] 刘欢, 王志忠. 煤电解氧化的伏安特性的研究[J]. 燃料化学学报, 2002, 30(2): 182-185. (LIU Huan, WANG Zhi-zhong. Study on volt-ampere characteristics of coal oxidation[J]. Journal of Fuel Chemistry and Technology, 2002, 30(2): 182-185.)

    13. [13]

      [13] COUGHLIN R W, FAROOQUE M. Consideration of electrodes and electrolytes for electrochemical gasification of coal by anodic oxidation[J]. J Appl Electrochem, 1980, 10(6): 729-740.

    14. [14]

      [14] DHOOGE P M, PARK S M. Electrochemistry of coal slurries:2 Studies on various experimental parameters affecting oxidation of coal slurries[J]. J Electrochem Soc, 1983, 130(5): 1029-1036.

    15. [15]

      [15] DHOOGE P M, STILWELL D E, PARK S M. Electrochemical studies of coal slurry oxidation mechanisms[J]. J Electrochem Soc, 1982, 129(10): 1719-1724.

    16. [16]

      [16] DHOOGE P M, PARK S M. Electrochemistry of coal slurries: 3 FTLR studies of electrolysis of coal[J]. J Electrochem Soc, 1983, 130(7): 1539-1542.

  • 加载中
    1. [1]

      Xin FengKexin GuoChunguang JiaBowen LiuSuqin CiJunxiang ChenZhenhai Wen . Hydrogen Generation Coupling with High-Selectivity Electrocatalytic Glycerol Valorization into Formate in an Acid-Alkali Dual-Electrolyte Flow Electrolyzer. Acta Physico-Chimica Sinica, 2024, 40(5): 2303050-0. doi: 10.3866/PKU.WHXB202303050

    2. [2]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    3. [3]

      Xiaofei LiuHe WangLi TaoWeimin RenXiaobing LuWenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008

    4. [4]

      Mingjie LeiWenting HuKexin LinXiujuan SunHaoshen ZhangYe QianTongyue KangXiulin WuHailong LiaoYuan PanYuwei ZhangDiye WeiPing Gao . Accelerating the reconstruction of NiSe2 by Co/Mn/Mo doping for enhanced urea electrolysis. Acta Physico-Chimica Sinica, 2025, 41(8): 100083-0. doi: 10.1016/j.actphy.2025.100083

    5. [5]

      Yifan ZHAOQiyun MAOMeijing GUOGuoying ZHANGTongliang HU . Z-scheme bismuth-based multi-site heterojunction: Synthesis and hydrogen production from photocatalytic hydrogen production. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1318-1330. doi: 10.11862/CJIC.20250001

    6. [6]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    7. [7]

      Zhiwen HUPing LIYulong YANGWeixia DONGQifu BAO . Morphology effects on the piezocatalytic performance of BaTiO3. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 339-348. doi: 10.11862/CJIC.20240172

    8. [8]

      Mahmoud SayedHan LiChuanbiao Bie . Challenges and prospects of photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(9): 100117-0. doi: 10.1016/j.actphy.2025.100117

    9. [9]

      Zixuan Zhao Miao Fan . “Carbon” with No “Ester”: A Boundless Journey of CO2 Transformation. University Chemistry, 2025, 40(7): 213-217. doi: 10.12461/PKU.DXHX202409040

    10. [10]

      Honghong ZhangZhen WeiDerek HaoLin JingYuxi LiuHongxing DaiWeiqin WeiJiguang Deng . 非均相催化CO2与烃类协同催化转化的最新进展. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-0. doi: 10.1016/j.actphy.2025.100073

    11. [11]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    12. [12]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

    13. [13]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    14. [14]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    15. [15]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    16. [16]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    17. [17]

      Jiageng Li Putrama . 数值积分耦合非线性最小二乘法一步确定反应动力学参数. University Chemistry, 2025, 40(6): 364-370. doi: 10.12461/PKU.DXHX202407098

    18. [18]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    19. [19]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    20. [20]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

Metrics
  • PDF Downloads(340)
  • Abstract views(1146)
  • HTML views(92)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return