Citation:
PENG Bing-xian, WU Dai-she. Leaching characteristics of iodine in coal[J]. Journal of Fuel Chemistry and Technology,
;2013, 41(2): 129-133.
-
The dynamic leaching experiments were carried out by different pH solutions in order to investigate the leaching behaviour of iodine in coal. Based on the contents of iodine in coal, residual and different leachates measured by inductively coupled plasma spectrometry (ICP-MS), the leaching rate (η) of coal and concentration of iodine (c) in leachate were calculated. The results show that the modes of occurrence and sites of iodine in coal, leaching time, and pH play important roles in controlling the leaching behavior of iodine. In limited time, the released iodine from coal increases with the rise of acidity of leaching solution, with leaching rates (η) of iodine from coal leached by pH 2.0 and pH 4.0 are 7.22% and 6.20%, respectively. However, the leaching rate of iodine in leachate (wx) leached by solution of pH 2.0 (1.92%) is less than that of pH 4.0 (5.42%). The average iodine concentration in leachate leached by pH 2.0 and pH 4.0 solution are 10.9μg/L in the first 40h and 10.6μg/L in the first 110h, respectively; there is little iodine in the leachates leached by pH 6.0 and pH 7.5 solution. Leached by acidic solution, the iodine occurred in little water-soluble and exchangeable, part of carbonate and Fe-Mn oxide forms which are on the surface of coal particles may be released firstly; and then the part of water-soluble and exchangeable iodine which are inside coal matrix come to be released.
-
Keywords:
- coal,
- iodine,
- leaching test,
- modes of occurrence
-
-
-
[1]
[1] DELANGE F. Risk and benefits of iodine supplementation[J]. Lancet, 1998, 351(9107): 923-924.
-
[2]
[2] WENG H X, WENG J K, YONG W B, SUN X W, ZHONG H. Capacity and degree of iodine absorbed and enriched by vegetable from soil[J]. J Environ Sci (China), 2003, 15(1): 107-111.
-
[3]
[3] BENOIST B, ANDERSSON M, TAKKOUCHE B, EGLI I. Prevalence of iodine deficiency worldwide[J]. Lancet, 2003, 362: 1859-1860.
-
[4]
[4] YE P, WANG X, WANG M, FAN Y, XIANG X. Recovery of vanadium from stone coal acid leaching solution by coprecipitation, alkaline roasting and water leaching[J]. Hydrometallurgy, 2012, 117-118: 108-115.
-
[5]
[5] ZHU X B, ZHANG Y M, HUNG J, LIU T, WANG Y. A kinetics study of multi-stage counter-current circulation acid leaching of vanadium from stone coal[J]. Int J Miner Process, 2012, 114-117: 1-6.
-
[6]
[6] GOLDA M, JANAS A, OLSZEWSKA D. The leaching of chlorine from hard coal: Part I Relationship between the process parameters and its effectivity[J]. Fuel Process Technol, 2011, 92(6): 1230-1235.
-
[7]
[7] 王文峰, 秦勇, 宋党育. 煤中有害元素的洗选洁净潜势[J]. 燃料化学学报, 2003, 31(4): 295-299. (WANG Wen-feng, QIN Yong, SONG Dang-yu. Cleaning potential of hazardous elements during coal washing[J]. Journal of Fuel Chemistry and Technology, 2003, 31(4): 295-299.)
-
[8]
[8] 秦勇, 王文峰, 宋党育. 太西煤中有害元素在洗选过程中的迁移行为与机理[J]. 燃料化学学报, 2002, 30(2): 148-150. (QIN Yong, WANG Wen-feng, SONG Dang-yu. Migrating behavior and mechanism of deleterious elements in Taixi coals during cleaning process[J]. Journal of Fuel Chemistry and Technology, 2002, 30(2): 148-150.)
-
[9]
[9] 张德祥, RILEY J T. 煤中形态硫分析及脱除能力研究[J]. 燃料化学学报, 1996, 24(2): 150-154. (ZHANG De-xiang, RILEY J T. Investigations into analysis and desulfuriztion reactivity of sulfur forms in coals[J]. Journal of Fuel Chemistry and Technology, 1996, 24(2): 150-154.)
-
[10]
[10] HUGGINS F E, SEIDU L B A, SHAH N, BACKUS J, HUFFMAN G P, HONAKER R Q. Mobility of elements in long-term leaching tests on Illinois #6 coal rejects[J]. Int J Coal Geol, 2012, 94: 326-336.
-
[11]
[11] 宋党育, 秦勇, 张军营, 王文峰, 郑楚光. 煤及其燃烧产物中有害痕量元素的淋滤特性研究[J]. 环境科学学报, 2005, 25(9): 1195-1201. (SONG Dang-yu, QIN Yong, ZHANG Jun-ying, ZHENG Chu-guang. Leaching characteristics of hazardous trace elements in coal and ash[J]. Acta Scientiae Circumstantiae, 2005, 25(9): 1195-1201.)
-
[12]
[12] FINKELMAN, R B. Modes of occurrence of trace elements in coal [M]. US Geol Surv. Open-file Rep. OFR-81-99, 1981.
-
[13]
[13] WU D, DENG H, ZHENG B, WANG W. Iodine in Chinese coals and its geochemistry during coalification[J]. Appl Geochem, 2008, 23(8): 2082-2090.
-
[14]
[14] 彭炳先, 吴代赦. 烟煤和无烟煤中碘的赋存形态及其环境效应分析[J]. 燃料化学学报, 2012, 40(3): 257-262. (PENG Bing-xian, WU Dai-she. Modes of iodine occurrence in bituminous coal and anthracite and their environmental effects[J]. Journal of Fuel Chemistry and Technology, 2012, 40(3): 257-262.)
-
[15]
[15] GB481-93, 生产煤样采取方法[S]. (GB 481-93, Sampling method of coal sample for production[S].)
-
[16]
[16] SHETAYA W H, YOUNG S D, WATTS M J, ANDER E L, BAILEY E H. Iodine dynamics in soils[J]. Geochim Cosmochim Acta, 2012, 77: 457-473.
-
[17]
[17] DAI J L, ZHANG M, HU Q H, HUANG Y Z, WANG R Q, ZHU Y G. Adsorption and desorption of iodine by various Chinese soils: II Iodide and iodate[J]. Geoderma, 2009, 153(1/2): 130-135.
-
[1]
-
-
-
[1]
Lin Ding , Jinpeng Zhang , Junfeng Li , Daying Liu . Color Catcher: A Marvelous Encounter of Starch and Iodine. University Chemistry, 2024, 39(6): 334-341. doi: 10.3866/PKU.DXHX202311064
-
[2]
Hongting Yan , Aili Feng , Rongxiu Zhu , Lei Liu , Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010
-
[3]
Jing JIN , Zhuming GUO , Zhiyin XIAO , Xiujuan JIANG , Yi HE , Xiaoming LIU . Tuning the stability and cytotoxicity of fac-[Fe(CO)3I3]- anion by its counter ions: From aminiums to inorganic cations. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 991-1004. doi: 10.11862/CJIC.20230458
-
[4]
Ruitong Zhang , Zhiqiang Zeng , Xiaoguang Zhang . Improvement of Ethyl Acetate Saponification Reaction and Iodine Clock Reaction Experiments. University Chemistry, 2024, 39(8): 197-203. doi: 10.3866/PKU.DXHX202312004
-
[5]
Qin Hou , Jiayi Hou , Aiju Shi , Xingliang Xu , Yuanhong Zhang , Yijing Li , Juying Hou , Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056
-
[6]
Chen LU , Qinlong HONG , Haixia ZHANG , Jian ZHANG . Syntheses, structures, and properties of copper-iodine cluster-based boron imidazolate framework materials. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 149-154. doi: 10.11862/CJIC.20240407
-
[7]
Pingping Zhu , Yongjun Xie , Yuanping Yi , Yu Huang , Qiang Zhou , Shiyan Xiao , Haiyang Yang , Pingsheng He . Excavation and Extraction of Ideological and Political Elements for the Virtual Simulation Experiments at Molecular Level: Taking the Project “the Simulation and Computation of Conformation, Morphology and Dimensions of Polymer Chains” as an Example. University Chemistry, 2024, 39(2): 83-88. doi: 10.3866/PKU.DXHX202309063
-
[8]
Yongming Zhu , Huili Hu , Yuanchun Yu , Xudong Li , Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086
-
[9]
Wei Shao , Wanqun Zhang , Pingping Zhu , Wanqun Hu , Qiang Zhou , Weiwei Li , Kaiping Yang , Xisheng Wang . Design and Practice of Ideological and Political Cases in the Course of Instrument Analysis Experiment: Taking the GC-MS Experiment as an Example. University Chemistry, 2024, 39(2): 147-154. doi: 10.3866/PKU.DXHX202309048
-
[10]
Qiang Zhou , Pingping Zhu , Wei Shao , Wanqun Hu , Xuan Lei , Haiyang Yang . Innovative Experimental Teaching Design for 3D Printing High-Strength Hydrogel Experiments. University Chemistry, 2024, 39(6): 264-270. doi: 10.3866/PKU.DXHX202310064
-
[11]
Zongpei Zhang , Yanyang Li , Yanan Si , Kai Li , Shuangquan Zang . Developing a Chemistry Experiment Center Employing a Multifaceted Approach to Serve High-Quality Laboratory Education. University Chemistry, 2024, 39(7): 13-19. doi: 10.12461/PKU.DXHX202404041
-
[12]
Wei Yan , Cailing Wang , Li Wang , Yonghai Song . Promoting the Reform of Basic Chemistry Experimental Courses through Laboratory Skill Competition. University Chemistry, 2024, 39(10): 189-194. doi: 10.3866/PKU.DXHX202403042
-
[13]
Yan Liu , Xiaojun Han , Ping Xu , Guoxu Zhang , Yu Wang , Zhicheng Zhang , Dianpeng Qi . “Five Measures” Based Science and Education Integration Experimental Teaching Mode to Promote the Construction of “Specialized Experiment” Curriculum. University Chemistry, 2024, 39(10): 299-307. doi: 10.12461/PKU.DXHX202405002
-
[14]
Kejie Li , Dongmei Qi . Exploration and Practice of Traditional Chinese Medicine Chemistry Laboratory Management Based on the “Smart Laboratory”. University Chemistry, 2024, 39(10): 353-360. doi: 10.12461/PKU.DXHX202406080
-
[15]
Houzhen Xiao , Mingyu Wang , Yong Liu , Bangsheng Lao , Lingbin Lu , Minghuai Yu . Course Ideological and Political Design of Combustion Heat Measurement Experiment. University Chemistry, 2024, 39(2): 7-13. doi: 10.3866/PKU.DXHX202310011
-
[16]
Yuan Chun , Lijun Yang , Jinyue Yang , Wei Gao . Ideological and Political Design of BZ Oscillatory Reaction Experiment. University Chemistry, 2024, 39(2): 72-76. doi: 10.3866/PKU.DXHX202308072
-
[17]
Mei Yan , Rida Feng , Yerdos·Tohtarkhan , Biao Long , Li Zhou , Chongshen Guo . Expansion and Extension of Liquid Saturated Vapor Measurement Experiment. University Chemistry, 2024, 39(3): 294-301. doi: 10.3866/PKU.DXHX202308103
-
[18]
Qian Huang , Zhaowei Li , Jianing Zhao , Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018
-
[19]
Qingying Gao , Tao Luo , Jianyuan Su , Chaofan Yu , Jiazhu Li , Bingfei Yan , Wenzuo Li , Zhen Zhang , Yi Liu . Refinement and Expansion of the Classic Cinnamic Acid Synthesis Experiment. University Chemistry, 2024, 39(5): 243-250. doi: 10.3866/PKU.DXHX202311074
-
[20]
Xinyu Liu , Weiran Hu , Zhengkai Li , Wei Ji , Xiao Ni . Algin Lab: Surging Luminescent Sea. University Chemistry, 2024, 39(5): 396-404. doi: 10.3866/PKU.DXHX202312021
-
[1]
Metrics
- PDF Downloads(681)
- Abstract views(3304)
- HTML views(259)