Citation:
LI Zhi-wen, CHEN Cong-biao, WANG Jun-gang, LIN Ming-gui, HOU Bo, JIA Li-tao, LI De-bao. Nitrogen-doped mesoporous carbon supported FeCu bimetallic catalyst and its CO hydrogenation performance[J]. Journal of Fuel Chemistry and Technology,
;2019, 47(6): 709-717.
-
In this work, nitrogen-doped mesoporous carbon (NDMC) was prepared by a hard template method, and the NDMC supported FeCu bimetallic catalysts were prepared by an impregnation method. The physical and chemical properties and CO hydrogenation performance of the catalysts with varying Fe/Cu ratios were studied. The results indicated that Cu-N had strong interaction which directly promoted Cu dispersion on the support. At a relatively high metal loading (45.0%-50.0%), Cu maintained uniform distribution similar to that of N, and the ratios of Fe/Cu on the catalyst surface were smaller than those in the bulk phase, which were different from precipitated Fe-Cu bimetallic catalysts. The XPS results showed that Cu was an electron donor, and the electrons in the Cu-N shifted to Fe. Compared with Fe/NDMC, the reduction of FexCuy/NDMC was facilitated, and their CO hydrogenation activity was significantly increased. Under the pretreatment conditions (H2, 300℃), Fe was not completely reduced, and H might mainly interact with Fe-O in the form of Fe-O-H, while Cu-N interaction was stronger than Cu-H, resulting in a decrease in the ratio of surface active carbon/hydrogen, leading to a gradual increase in C5+ selectivity with the decrease of Fe/Cu ratio. Meanwhile, the introduction of Cu inhibited CO dissociation to some extent, and the electron migration ability of the support to the metal gradually increased with decreasing Fe/Cu ratio, and as a result the surface alkalinity of the catalysts increased with increasing Cu content, leading to further enhancement of C5+ selectivity and alcohol selectivity.
-
-
-
[1]
LIAND C D, LI Z J, DAI S. Mesoporous carbon materials:synthesis and modification[J]. Angew Chem Int Ed Eng, 2008,47(20):3696-3717. doi: 10.1002/(ISSN)1521-3773
-
[2]
FU T J, LI Z H. Review of recent development in Co-based catalysts supported on carbon materials for Fischer-Tropsch synthesis[J]. Chem Eng Sci, 2015,135:3-20. doi: 10.1016/j.ces.2015.03.007
-
[3]
XIONG H F, JEWELL L L, COVILLE N J. Shaped carbons as supports for the catalytic conversion of syngas to clean fuels[J]. ACS Catal, 2015,5(4):2640-2658. doi: 10.1021/acscatal.5b00090
-
[4]
LIU Yun-peng, ZHOU Jie, LI Zhong-jian, LEI Le-cheng. Research progress of N-doped ordered mesoporous carbon[J]. Mod Chem Ind, 2014,34(6):19-22.
-
[5]
LI Suo, YAO Nan. Application of nitrogen-doped carbon materials in Fischer-Tropsch synthesis reaction[J]. Chem Ind Eng Prog, 2015,34(11):3933-3937.
-
[6]
SANKAR M, DIMITRATOS N, MIEDZIAK P J, WELLS P P, KIELY C J, HUTCHING G J. Designing bimetallic catalysts for a green and sustainable future[J]. Chem Soc Rev, 2012,41(24):8099-8139. doi: 10.1039/c2cs35296f
-
[7]
WANG G H, CAO Z W, GU D, PFANDER N, SWERTZ A C, SPLIETHOFF B, BONGARD H J, WEIDENTHALER C, SCHMIDT W, RINALDI R, SCHUTH F. Nitrogen-doped ordered mesoporous carbon supported bimetallic PtCo nanoparticles for upgrading of biophenolics[J]. Angew Chem Int Ed, 2016,55(31):8850-8855. doi: 10.1002/anie.201511558
-
[8]
XIAO K, QI X Z, BAO Z H, WANG X X, ZHONG L S, FANG K G, LIN M G, SUN Y H. CuFe, CuCo and CuNi nanoparticles as catalysts for higher alcohol synthesis from syngas:A comparative study[J]. Catal Sci Technol, 2013,3(6):1591-1602. doi: 10.1039/c3cy00063j
-
[9]
XIAO K, BAO Z H, QI X Z, WANG X X, ZHONG L S, LIN M G, FANG K G. Unsupported CuFe bimetallic nanoparticles for higher alcohol synthesis via syngas[J]. Catal Commun, 2013,40:154-157. doi: 10.1016/j.catcom.2013.06.024
-
[10]
KHODAKOV A Y, CHU W, FONGARLAND P. Advances in the development of novel cobalt Fischer-Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels[J]. Chem Rev, 2007,107(5):1692-1744. doi: 10.1021/cr050972v
-
[11]
LI S Z, LI A W, KRISHNAMOORTHY S, IGLESIA E. Effects of Zn, Cu, and K promoters on the structure and on the reduction, carburization, and catalytic behavior of iron-based Fischer-Tropsch synthesis catalysts[J]. Catal Lett, 2001,77(4):197-205. doi: 10.1023/A:1013284217689
-
[12]
GAO W, ZHAO Y F, LIU J M, HUANG Q W, HE S, LI C M, ZHAO J W, WEI M. Catalytic conversion of syngas to mixed alcohols over CuFe-based catalysts derived from layered double hydroxides[J]. Catal Sci Technol, 2013,3(5):1324-1332. doi: 10.1039/c3cy00025g
-
[13]
XIAO K, BAO Z H, QI X Z, WANG X X, ZHONG L S, FANG K G, LIN M G, SUN Y H. Structural evolution of CuFe bimetallic nanoparticles for higher alcohol synthesis[J]. J Mol Catal A:Chem, 2013,378(11):319-325.
-
[14]
SHI X P, YU H B, GAO S, LI X Y, FANG H H, LI R J, LI Y Y, ZHANG L J, LIANG X L, YUAN Y Z. Synergistic effect of nitrogen-doped carbon-nanotube-supported Cu-Fe catalyst for the synthesis of higher alcohols from syngas[J]. Fuel, 2017,210:241-248. doi: 10.1016/j.fuel.2017.08.064
-
[15]
KIATPHUENGPORN S, CHAREONPANICH M, LIMTRAKUL J. Effect of unimodal and bimodal MCM-41 mesoporous silica supports on activity of Fe-Cu catalysts for CO2 hydrogenation[J]. Chem Eng J, 2014,240:527-533. doi: 10.1016/j.cej.2013.10.090
-
[16]
WANG S, ZHAO Q, WEI H, WANG J Q, CHO M, CHO H S, TERASAKI O, WAN Y. Aggregation-free gold nanoparticles in ordered mesoporous carbons:Toward highly active and stable heterogeneous catalysts[J]. J Am Chem Soc, 2013,135(32):11849-11860. doi: 10.1021/ja403822d
-
[17]
LIU G G, CHEN Q J, OYUNKHAND E, DING S Y, YAMANE N, YANG G H, YONEYAMA Y, TSUBAKI N. Nitrogen-rich mesoporous carbon supported iron catalyst with superior activity for Fischer-Tropsch synthesis[J]. Carbon, 2018,130:304-314. doi: 10.1016/j.carbon.2018.01.015
-
[18]
XIONG H F, MOYO M, RAYNER M, JEWELL L L, BILLING D G, COVILLE N. Autoreduction and catalytic performance of a cobalt Fischer-Tropsch synthesis catalyst supported on nitrogen-doped carbon spheres[J]. ChemCatChem, 2010,2(5):514-518. doi: 10.1002/cctc.200900309
-
[19]
DING Y Q, YANG J H, YANG G Z, LI P. Fabrication of ordered mesoporous carbons anchored with MnO nanoparticles through dual-templating approach for supercapacitors[J]. Ceram Int, 2015,41(8):9980-9987. doi: 10.1016/j.ceramint.2015.04.078
-
[20]
LU J Z, YANG L J, XU B L, WU Q, ZHANG D, YUAN S J, ZHAI Y P, WANG X Z, FAN Y N, HU Z. Promotion effects of nitrogen doping into carbon nanotubes on supported iron Fischer-Tropsch catalysts for lower olefins[J]. ACS Catal, 2014,4(2):613-621. doi: 10.1021/cs400931z
-
[21]
CHE R C, LIANG C Y, SHI H L, ZHOU X G, YANG X N. Electron energy-loss spectroscopy characterization and microwave absorption of iron-filled carbon-nitrogen nanotubes[J]. Nanotechnol, 2007,18(35)355705. doi: 10.1088/0957-4484/18/35/355705
-
[22]
KIM S J, PARK Y J, RA E J, KIM K K, AN K H, LEE Y H, CHOI J Y, PARK C H, DOO S G, PARK M H, YANG C W. Defect-induced loading of Pt nanoparticles on carbon nanotubes[J]. Appl Phy Lett, 2007,90(2)169.
-
[23]
BARTOLOME L, IMRAN M, LEE K G, SANGALANG A, AHN J K, KIM D H. Superparamagnetic γ-Fe2O3 nanoparticles as an easily recoverable catalyst for the chemical recycling of PET[J]. Green Chem, 2014,16(1):279-286. doi: 10.1039/C3GC41834K
-
[24]
LI F, ZHANG L H, EVANS D G, DUAN X. Structure and surface chemistry of manganese-doped copper-based mixed metal oxides derived from layered double hydroxides[J]. Colloids Surfaces A, 2004,244(1):169-177.
-
[25]
LUK H T, MONDELLI C, MITCHELL S, SIOL S, STEWART J A, FERRE D C, PEREZ-RAMIREZ J. Role of carbonaceous supports and potassium promoter on higher alcohols synthesis over copper-iron catalysts[J]. ACS Catal, 2018,8(10):9604-9618. doi: 10.1021/acscatal.8b02714
-
[26]
SUN F G, LIU J, CHEN H C, ZHANG Z X, QIAO W M, LONG D H, LING L C. Nitrogen-rich mesoporous carbons:Highly efficient, regenerable metal-free catalysts for low-temperature oxidation of H2S[J]. ACS Catal, 2013,3(5):862-870. doi: 10.1021/cs300791j
-
[27]
BAGUS P S, ILTON E, NELIN C J. The interpretation of XPS spectra:Insights into materials properties[J]. Surf Sci Rep, 2013,68(2):273-304. doi: 10.1016/j.surfrep.2013.03.001
-
[28]
YANG X M, WEI Y, SU Y L, ZHOU L P. Characterization of fused Fe-Cu based catalyst for higher alcohols synthesis and DRIFTS investigation of TPSR[J]. Fuel Process Technol, 2010,91(9):1168-1173. doi: 10.1016/j.fuproc.2010.03.032
-
[29]
ZHANG C H, ZHAO G Y, LIU K K, YANG Y, XIANG H W, LI Y W. Adsorption and reaction of CO and hydrogen on iron-based Fischer-Tropsch synthesis catalysts[J]. J Mol Catal A:Chem, 2010,328(1/2):35-43.
-
[30]
BLIEM R, VAN DER HOEVEN J, ZAVODNY A, GAMBA O, PAVELEC J, DE JONGH P E, SCHMID M, DIEBOLD U, PARKINSON G S. An atomic-scale view of CO and H2 oxidation on a Pt/Fe3O4model catalyst[J]. Angew Chem Int Ed, 2015,127(47):14205-14208. doi: 10.1002/ange.201507368
-
[31]
AL-DOSSARY M, FIERRO J L G, SPIVEY J J. Cu-promoted Fe2O3/MgO-based Fischer-Tropsch catalysts of biomass-derived syngas[J]. Ind Eng Chem Res, 2015,54(3):911-921. doi: 10.1021/ie504473a
-
[32]
MAO W Y, MA H F, ZHANG H T, SUN Q W, YING W Y. Influence of copper loading on the surface species and catalytic properties in the formation of oxygenated by-products during FTS over FeCuKLa/SiO2catalysts[J]. Catal Lett, 2012,142(9):1098-1106. doi: 10.1007/s10562-012-0865-6
-
[33]
KANG S H, KOO H M, KIM A R, LEE D H, RYU J H, YOO Y D, BAE J W. Correlation of the amount of carbonaceous species with catalytic performance on iron-based Fischer-Tropsch catalysts[J]. Fuel Process Technol, 2013,109:141-149. doi: 10.1016/j.fuproc.2012.09.052
-
[34]
ZHANG C H, YANG Y, TENG B T, LI T Z, ZHENG H Y, XIANG H W, LI Y W. Study of an iron-manganese Fischer-Tropsch synthesis catalyst promoted with copper[J]. J Catal, 2006,237(2):405-415.
-
[35]
CHONCO Z H, LODYA L, CLAEYS M, STEEN E V. Copper ferrites:A model for investigating the role of copper in the dynamic iron-based Fischer-Tropsch catalyst[J]. J Catal, 2013,308:363-373. doi: 10.1016/j.jcat.2013.08.012
-
[1]
-
-
-
[1]
Chuanming GUO , Kaiyang ZHANG , Yun WU , Rui YAO , Qiang ZHAO , Jinping LI , Guang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459
-
[2]
Hailian Tang , Siyuan Chen , Qiaoyun Liu , Guoyi Bai , Botao Qiao , Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004
-
[3]
Jiaxun Wu , Mingde Li , Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098
-
[4]
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
-
[5]
Huiying Xu , Minghui Liang , Zhi Zhou , Hui Gao , Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011
-
[6]
Xiangyu CAO , Jiaying ZHANG , Yun FENG , Linkun SHEN , Xiuling ZHANG , Juanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270
-
[7]
Xianghai Song , Xiaoying Liu , Zhixiang Ren , Xiang Liu , Mei Wang , Yuanfeng Wu , Weiqiang Zhou , Zhi Zhu , Pengwei Huo . 氮掺杂显著提升BiOBr光催化还原CO2性能研究. Acta Physico-Chimica Sinica, 2025, 41(6): 100055-. doi: 10.1016/j.actphy.2025.100055
-
[8]
Lina Guo , Ruizhe Li , Chuang Sun , Xiaoli Luo , Yiqiu Shi , Hong Yuan , Shuxin Ouyang , Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002
-
[9]
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
-
[10]
Liuyun Chen , Wenju Wang , Tairong Lu , Xuan Luo , Xinling Xie , Kelin Huang , Shanli Qin , Tongming Su , Zuzeng Qin , Hongbing Ji . 软模板法诱导Cu/Al2O3深孔道结构促进等离子催化CO2加氢制二甲醚. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054
-
[11]
Guimin ZHANG , Wenjuan MA , Wenqiang DING , Zhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293
-
[12]
Wenxiu Yang , Jinfeng Zhang , Quanlong Xu , Yun Yang , Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014
-
[13]
Aiai WANG , Lu ZHAO , Yunfeng BAI , Feng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225
-
[14]
Ping ZHANG , Chenchen ZHAO , Xiaoyun CUI , Bing XIE , Yihan LIU , Haiyu LIN , Jiale ZHANG , Yu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014
-
[15]
Xueyu Lin , Ruiqi Wang , Wujie Dong , Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005
-
[16]
Zhengyu Zhou , Huiqin Yao , Youlin Wu , Teng Li , Noritatsu Tsubaki , Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010
-
[17]
Jiaming Xu , Yu Xiang , Weisheng Lin , Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093
-
[18]
Bing LIU , Huang ZHANG , Hongliang HAN , Changwen HU , Yinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398
-
[19]
Yuanpei ZHANG , Jiahong WANG , Jinming HUANG , Zhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077
-
[20]
Endong YANG , Haoze TIAN , Ke ZHANG , Yongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369
-
[1]
Metrics
- PDF Downloads(19)
- Abstract views(1558)
- HTML views(309)