Citation: LI Zhi-wen, CHEN Cong-biao, WANG Jun-gang, LIN Ming-gui, HOU Bo, JIA Li-tao, LI De-bao. Nitrogen-doped mesoporous carbon supported FeCu bimetallic catalyst and its CO hydrogenation performance[J]. Journal of Fuel Chemistry and Technology, ;2019, 47(6): 709-717. shu

Nitrogen-doped mesoporous carbon supported FeCu bimetallic catalyst and its CO hydrogenation performance

  • Corresponding author: CHEN Cong-biao,  JIA Li-tao, 
  • Received Date: 26 January 2019
    Revised Date: 19 March 2019

    Fund Project: Basic Applied Research Project of Shanxi 201601D021044Strategic Priority Research Program of the Chinese Academy of Sciences XDA21020202The project was supported by Basic Applied Research Project of Shanxi (201601D021044) and Strategic Priority Research Program of the Chinese Academy of Sciences (XDA21020202)

Figures(9)

  • In this work, nitrogen-doped mesoporous carbon (NDMC) was prepared by a hard template method, and the NDMC supported FeCu bimetallic catalysts were prepared by an impregnation method. The physical and chemical properties and CO hydrogenation performance of the catalysts with varying Fe/Cu ratios were studied. The results indicated that Cu-N had strong interaction which directly promoted Cu dispersion on the support. At a relatively high metal loading (45.0%-50.0%), Cu maintained uniform distribution similar to that of N, and the ratios of Fe/Cu on the catalyst surface were smaller than those in the bulk phase, which were different from precipitated Fe-Cu bimetallic catalysts. The XPS results showed that Cu was an electron donor, and the electrons in the Cu-N shifted to Fe. Compared with Fe/NDMC, the reduction of FexCuy/NDMC was facilitated, and their CO hydrogenation activity was significantly increased. Under the pretreatment conditions (H2, 300℃), Fe was not completely reduced, and H might mainly interact with Fe-O in the form of Fe-O-H, while Cu-N interaction was stronger than Cu-H, resulting in a decrease in the ratio of surface active carbon/hydrogen, leading to a gradual increase in C5+ selectivity with the decrease of Fe/Cu ratio. Meanwhile, the introduction of Cu inhibited CO dissociation to some extent, and the electron migration ability of the support to the metal gradually increased with decreasing Fe/Cu ratio, and as a result the surface alkalinity of the catalysts increased with increasing Cu content, leading to further enhancement of C5+ selectivity and alcohol selectivity.
  • 加载中
    1. [1]

      LIAND C D, LI Z J, DAI S. Mesoporous carbon materials:synthesis and modification[J]. Angew Chem Int Ed Eng, 2008,47(20):3696-3717. doi: 10.1002/(ISSN)1521-3773

    2. [2]

      FU T J, LI Z H. Review of recent development in Co-based catalysts supported on carbon materials for Fischer-Tropsch synthesis[J]. Chem Eng Sci, 2015,135:3-20. doi: 10.1016/j.ces.2015.03.007

    3. [3]

      XIONG H F, JEWELL L L, COVILLE N J. Shaped carbons as supports for the catalytic conversion of syngas to clean fuels[J]. ACS Catal, 2015,5(4):2640-2658. doi: 10.1021/acscatal.5b00090

    4. [4]

      LIU Yun-peng, ZHOU Jie, LI Zhong-jian, LEI Le-cheng. Research progress of N-doped ordered mesoporous carbon[J]. Mod Chem Ind, 2014,34(6):19-22.  

    5. [5]

      LI Suo, YAO Nan. Application of nitrogen-doped carbon materials in Fischer-Tropsch synthesis reaction[J]. Chem Ind Eng Prog, 2015,34(11):3933-3937.  

    6. [6]

      SANKAR M, DIMITRATOS N, MIEDZIAK P J, WELLS P P, KIELY C J, HUTCHING G J. Designing bimetallic catalysts for a green and sustainable future[J]. Chem Soc Rev, 2012,41(24):8099-8139. doi: 10.1039/c2cs35296f

    7. [7]

      WANG G H, CAO Z W, GU D, PFANDER N, SWERTZ A C, SPLIETHOFF B, BONGARD H J, WEIDENTHALER C, SCHMIDT W, RINALDI R, SCHUTH F. Nitrogen-doped ordered mesoporous carbon supported bimetallic PtCo nanoparticles for upgrading of biophenolics[J]. Angew Chem Int Ed, 2016,55(31):8850-8855. doi: 10.1002/anie.201511558

    8. [8]

      XIAO K, QI X Z, BAO Z H, WANG X X, ZHONG L S, FANG K G, LIN M G, SUN Y H. CuFe, CuCo and CuNi nanoparticles as catalysts for higher alcohol synthesis from syngas:A comparative study[J]. Catal Sci Technol, 2013,3(6):1591-1602. doi: 10.1039/c3cy00063j

    9. [9]

      XIAO K, BAO Z H, QI X Z, WANG X X, ZHONG L S, LIN M G, FANG K G. Unsupported CuFe bimetallic nanoparticles for higher alcohol synthesis via syngas[J]. Catal Commun, 2013,40:154-157. doi: 10.1016/j.catcom.2013.06.024

    10. [10]

      KHODAKOV A Y, CHU W, FONGARLAND P. Advances in the development of novel cobalt Fischer-Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels[J]. Chem Rev, 2007,107(5):1692-1744. doi: 10.1021/cr050972v

    11. [11]

      LI S Z, LI A W, KRISHNAMOORTHY S, IGLESIA E. Effects of Zn, Cu, and K promoters on the structure and on the reduction, carburization, and catalytic behavior of iron-based Fischer-Tropsch synthesis catalysts[J]. Catal Lett, 2001,77(4):197-205. doi: 10.1023/A:1013284217689

    12. [12]

      GAO W, ZHAO Y F, LIU J M, HUANG Q W, HE S, LI C M, ZHAO J W, WEI M. Catalytic conversion of syngas to mixed alcohols over CuFe-based catalysts derived from layered double hydroxides[J]. Catal Sci Technol, 2013,3(5):1324-1332. doi: 10.1039/c3cy00025g

    13. [13]

      XIAO K, BAO Z H, QI X Z, WANG X X, ZHONG L S, FANG K G, LIN M G, SUN Y H. Structural evolution of CuFe bimetallic nanoparticles for higher alcohol synthesis[J]. J Mol Catal A:Chem, 2013,378(11):319-325.  

    14. [14]

      SHI X P, YU H B, GAO S, LI X Y, FANG H H, LI R J, LI Y Y, ZHANG L J, LIANG X L, YUAN Y Z. Synergistic effect of nitrogen-doped carbon-nanotube-supported Cu-Fe catalyst for the synthesis of higher alcohols from syngas[J]. Fuel, 2017,210:241-248. doi: 10.1016/j.fuel.2017.08.064

    15. [15]

      KIATPHUENGPORN S, CHAREONPANICH M, LIMTRAKUL J. Effect of unimodal and bimodal MCM-41 mesoporous silica supports on activity of Fe-Cu catalysts for CO2 hydrogenation[J]. Chem Eng J, 2014,240:527-533. doi: 10.1016/j.cej.2013.10.090

    16. [16]

      WANG S, ZHAO Q, WEI H, WANG J Q, CHO M, CHO H S, TERASAKI O, WAN Y. Aggregation-free gold nanoparticles in ordered mesoporous carbons:Toward highly active and stable heterogeneous catalysts[J]. J Am Chem Soc, 2013,135(32):11849-11860. doi: 10.1021/ja403822d

    17. [17]

      LIU G G, CHEN Q J, OYUNKHAND E, DING S Y, YAMANE N, YANG G H, YONEYAMA Y, TSUBAKI N. Nitrogen-rich mesoporous carbon supported iron catalyst with superior activity for Fischer-Tropsch synthesis[J]. Carbon, 2018,130:304-314. doi: 10.1016/j.carbon.2018.01.015

    18. [18]

      XIONG H F, MOYO M, RAYNER M, JEWELL L L, BILLING D G, COVILLE N. Autoreduction and catalytic performance of a cobalt Fischer-Tropsch synthesis catalyst supported on nitrogen-doped carbon spheres[J]. ChemCatChem, 2010,2(5):514-518. doi: 10.1002/cctc.200900309

    19. [19]

      DING Y Q, YANG J H, YANG G Z, LI P. Fabrication of ordered mesoporous carbons anchored with MnO nanoparticles through dual-templating approach for supercapacitors[J]. Ceram Int, 2015,41(8):9980-9987. doi: 10.1016/j.ceramint.2015.04.078

    20. [20]

      LU J Z, YANG L J, XU B L, WU Q, ZHANG D, YUAN S J, ZHAI Y P, WANG X Z, FAN Y N, HU Z. Promotion effects of nitrogen doping into carbon nanotubes on supported iron Fischer-Tropsch catalysts for lower olefins[J]. ACS Catal, 2014,4(2):613-621. doi: 10.1021/cs400931z

    21. [21]

      CHE R C, LIANG C Y, SHI H L, ZHOU X G, YANG X N. Electron energy-loss spectroscopy characterization and microwave absorption of iron-filled carbon-nitrogen nanotubes[J]. Nanotechnol, 2007,18(35)355705. doi: 10.1088/0957-4484/18/35/355705

    22. [22]

      KIM S J, PARK Y J, RA E J, KIM K K, AN K H, LEE Y H, CHOI J Y, PARK C H, DOO S G, PARK M H, YANG C W. Defect-induced loading of Pt nanoparticles on carbon nanotubes[J]. Appl Phy Lett, 2007,90(2)169.  

    23. [23]

      BARTOLOME L, IMRAN M, LEE K G, SANGALANG A, AHN J K, KIM D H. Superparamagnetic γ-Fe2O3 nanoparticles as an easily recoverable catalyst for the chemical recycling of PET[J]. Green Chem, 2014,16(1):279-286. doi: 10.1039/C3GC41834K

    24. [24]

      LI F, ZHANG L H, EVANS D G, DUAN X. Structure and surface chemistry of manganese-doped copper-based mixed metal oxides derived from layered double hydroxides[J]. Colloids Surfaces A, 2004,244(1):169-177.  

    25. [25]

      LUK H T, MONDELLI C, MITCHELL S, SIOL S, STEWART J A, FERRE D C, PEREZ-RAMIREZ J. Role of carbonaceous supports and potassium promoter on higher alcohols synthesis over copper-iron catalysts[J]. ACS Catal, 2018,8(10):9604-9618. doi: 10.1021/acscatal.8b02714

    26. [26]

      SUN F G, LIU J, CHEN H C, ZHANG Z X, QIAO W M, LONG D H, LING L C. Nitrogen-rich mesoporous carbons:Highly efficient, regenerable metal-free catalysts for low-temperature oxidation of H2S[J]. ACS Catal, 2013,3(5):862-870. doi: 10.1021/cs300791j

    27. [27]

      BAGUS P S, ILTON E, NELIN C J. The interpretation of XPS spectra:Insights into materials properties[J]. Surf Sci Rep, 2013,68(2):273-304. doi: 10.1016/j.surfrep.2013.03.001

    28. [28]

      YANG X M, WEI Y, SU Y L, ZHOU L P. Characterization of fused Fe-Cu based catalyst for higher alcohols synthesis and DRIFTS investigation of TPSR[J]. Fuel Process Technol, 2010,91(9):1168-1173. doi: 10.1016/j.fuproc.2010.03.032

    29. [29]

      ZHANG C H, ZHAO G Y, LIU K K, YANG Y, XIANG H W, LI Y W. Adsorption and reaction of CO and hydrogen on iron-based Fischer-Tropsch synthesis catalysts[J]. J Mol Catal A:Chem, 2010,328(1/2):35-43.  

    30. [30]

      BLIEM R, VAN DER HOEVEN J, ZAVODNY A, GAMBA O, PAVELEC J, DE JONGH P E, SCHMID M, DIEBOLD U, PARKINSON G S. An atomic-scale view of CO and H2 oxidation on a Pt/Fe3O4model catalyst[J]. Angew Chem Int Ed, 2015,127(47):14205-14208. doi: 10.1002/ange.201507368

    31. [31]

      AL-DOSSARY M, FIERRO J L G, SPIVEY J J. Cu-promoted Fe2O3/MgO-based Fischer-Tropsch catalysts of biomass-derived syngas[J]. Ind Eng Chem Res, 2015,54(3):911-921. doi: 10.1021/ie504473a

    32. [32]

      MAO W Y, MA H F, ZHANG H T, SUN Q W, YING W Y. Influence of copper loading on the surface species and catalytic properties in the formation of oxygenated by-products during FTS over FeCuKLa/SiO2catalysts[J]. Catal Lett, 2012,142(9):1098-1106. doi: 10.1007/s10562-012-0865-6

    33. [33]

      KANG S H, KOO H M, KIM A R, LEE D H, RYU J H, YOO Y D, BAE J W. Correlation of the amount of carbonaceous species with catalytic performance on iron-based Fischer-Tropsch catalysts[J]. Fuel Process Technol, 2013,109:141-149. doi: 10.1016/j.fuproc.2012.09.052

    34. [34]

      ZHANG C H, YANG Y, TENG B T, LI T Z, ZHENG H Y, XIANG H W, LI Y W. Study of an iron-manganese Fischer-Tropsch synthesis catalyst promoted with copper[J]. J Catal, 2006,237(2):405-415.  

    35. [35]

      CHONCO Z H, LODYA L, CLAEYS M, STEEN E V. Copper ferrites:A model for investigating the role of copper in the dynamic iron-based Fischer-Tropsch catalyst[J]. J Catal, 2013,308:363-373. doi: 10.1016/j.jcat.2013.08.012

  • 加载中
    1. [1]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    2. [2]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    3. [3]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    4. [4]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    5. [5]

      Huiying Xu Minghui Liang Zhi Zhou Hui Gao Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011

    6. [6]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    7. [7]

      Xianghai Song Xiaoying Liu Zhixiang Ren Xiang Liu Mei Wang Yuanfeng Wu Weiqiang Zhou Zhi Zhu Pengwei Huo . 氮掺杂显著提升BiOBr光催化还原CO2性能研究. Acta Physico-Chimica Sinica, 2025, 41(6): 100055-. doi: 10.1016/j.actphy.2025.100055

    8. [8]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    9. [9]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    10. [10]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . 软模板法诱导Cu/Al2O3深孔道结构促进等离子催化CO2加氢制二甲醚. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    11. [11]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    12. [12]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    13. [13]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    14. [14]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    15. [15]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    16. [16]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    17. [17]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    18. [18]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    19. [19]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    20. [20]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

Metrics
  • PDF Downloads(19)
  • Abstract views(1558)
  • HTML views(309)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return