Citation: ZHOU Jian, RAN Jing-yu, ZHANG Li. A DFT study on the reaction pathway for the oxidation of C6H2(OH)3CH3 to hydroxyl benzoic acid[J]. Journal of Fuel Chemistry and Technology, ;2018, 46(2): 189-197. shu

A DFT study on the reaction pathway for the oxidation of C6H2(OH)3CH3 to hydroxyl benzoic acid

  • Corresponding author: RAN Jing-yu, ranjy@cqu.edu.cn
  • Received Date: 5 September 2017
    Revised Date: 31 January 2018

Figures(15)

  • The reaction pathways for the oxidation of C6H2(OH)3CH3 oxidizing into hydroxyl benzoic acid were investigated by using density functional theory (DFT) method at the GGA/BP levels with Materials Studio 8.0 program. The results illustrated that the reactions for the oxidation of hydrogen on the methyl into hydroxyl, the hydroxyl to aldehyde, and then the aldehyde to carboxylic are all exothermic. As the main path, the oxidation of C6H2(OH)3CH3 to hydroxyl benzoic acid follows:C6H2(OH)3CH3+3O → C6H2(OH)3C(OH)3 → C6H2(OH)3COOH+H2O; as the controlling step, the conversion of hydroxyl to carboxyl exhibits a high energy barrier (130 kJ/mol) and a low reaction rate (ln(k)=-22.96 s-1). The oxidation of hydroxyl and aldehyde to carboxylic acid follows the sequence of -CHO > -C(OH)3 > -HC(OH)2 > -H2C(OH). An increase in the temperature and oxygen concentration is beneficial to the formation of hydroxyl benzoic acid, whereas appropriate catalyst can promote the whole reaction process.
  • 加载中
    1. [1]

      GAO Jian-ye. The development of alternative fuels for coal liquefaction fuels[J]. Gas Heat, 2007,27(1):37-43.  

    2. [2]

      SIMSEK E H, KARADUMAN A, OLCAY A. Liquefaction of turkish coals in tetralin with microwaves[J]. Fuel Process Technol, 2001,73(2):111-125. doi: 10.1016/S0378-3820(01)00196-5

    3. [3]

      AMESTICA L A, WOLF E E. Catalytic liquefaction of coal with supercritical water/CO/solvent media[J]. Fuel, 1986,65(9):1226-1233. doi: 10.1016/0016-2361(86)90234-6

    4. [4]

      WANG Chun-ping. General situation of coal liquefaction in china[J]. Chem Eng, 2005,19(12):40-41. doi: 10.3969/j.issn.1002-1124.2005.12.016

    5. [5]

      ESPINOZA R L, STEYNBERG A P, JAGER B, VOSLOO A C. Low temperature Fischer-Tropsch synthesis from a sasol perspective[J]. Appl Catal A:Gen, 1999,186(1/2):13-26.  

    6. [6]

      STEYNBERG A P, ESPINOZA R L, JAGER B, VOSLOO A C. High temperature Fischer-Tropsch synthesis in commercial practice[J]. Appl Catal A:Gen, 1999,186(1/2):41-54.  

    7. [7]

      WU Chun-lai. Coal indirect liquefaction technology of south africa's SASOL[J]. Coal Chem Ind, 2003(2):3-6.  

    8. [8]

      VAN WECHEM V M H, SENDEN M M G. Conversion of natural gas to transportation fuels via the shell middle distillate synthesis process (SMDS)[J]. Catal Today, 1991,8(3):43-71.  

    9. [9]

      XIANG Hong-wei, TANG Hong-qing, LI Yong-wang. Review and prospect of coal chemical technologyⅣ.Coal indirect liquefaction technology[J]. J Fuel Chem Technol, 2001,29(4):289-298.  

    10. [10]

      LIU Z X, LIU Z C. GC/MS analysis of water-soluble products from the mild oxidation of longkou brown coal with H2O2[J]. Energy Fuels, 2003,17(2):424-426. doi: 10.1021/ef020071e

    11. [11]

      KOUICHI M, KAZUHIRO M. New oxidative degradation method for producing fatty acids in hgh yields and high selectivity from low-rank coals[J]. Energy Fuels, 1996,10(6):1196-1201.  

    12. [12]

      JUN-ICHIRO H. Depolymerization of lower rank coals by low-temperature O2 oxidation[J]. Energy Fuels, 1997,11(1):227-235. doi: 10.1021/ef960104o

    13. [13]

      KAZUHIRO M. Extraction of low-rank coals oxidized with hydrogen peroxide in conventionally used solvents at room temperature[J]. Energy Fuels, 1997,11(4):825-831. doi: 10.1021/ef960225o

    14. [14]

      FENG Bo, QI Lu, ZHANG Jing-hua. Qualitative and metallurgical analysis of lignite oxidation products in weak oxidized environment[J]. Metall Anal, 2009,29(1):21-24.  

    15. [15]

      YANG F, HOU Y, WU W, WANG Q, NIU M G, REN S H. The relationship between benzene carboxylic acids from coal via selective oxidation and coal rank[J]. Fuel Process Technol, 2017,160:207-215. doi: 10.1016/j.fuproc.2017.02.035

    16. [16]

      WANG W, HOU Y, NIU M, WU T, WU W Z. Production of benzene polycarboxylic acids from bituminous coal by alkali-oxygen oxidation at high temperatures[J]. Fuel Process Technol, 2013,110(6):184-189.  

    17. [17]

      ZHAO Yu-wei. Product and structure analysis of basic research for lignite oxidation in oxygen alkaline environment[D]. Beijing: Beijing University of Chemical Technology, 2015. 

    18. [18]

      WANG Wen-hua. The research of selective catalytic oxidation for preparation chemicals by coal and biomass[D]. Beijing: Beijing University of Chemical Technology, 2013.

    19. [19]

      YANG F, HOU Y, WU W, WANG Q. A new insight into the structure of Huolinhe lignite based on the yields of benzene carboxylic acids[J]. Fuel, 2017,189:408-418.

    20. [20]

      WU Tong. The study of preparation of Benzene carboxylic acid and its separation by kinds of coal oxidation in oxygen alkaline[D]. Beijing: Beijing University of Chemical Technology, 2014.

    21. [21]

      WANG W, HOU Y, WU W, NIU M G. Simultaneous production of small-molecule fatty acids and benzene polycarboxylic acids from lignite by alkali-oxygen oxidation[J]. Fuel Process Technol, 2013,112(4):7-11.  

    22. [22]

      ZHU Pei-zi, GAO Jin-shen. Coal Chemistry[M]. Shanghai:Shanghai Scientific & Technical Publishers, 1984.

    23. [23]

      YU Ji-shun. Coal Chemistry[M]. Beijing:Metallurgical Industry Press, 2000.

    24. [24]

      QI W, RAN J, WANG R, SHI J, DU X S, RAN M C. Kinetic mechanism of effects of hydrogen addition on methane catalytic combustion over Pt(111) surface:A DFT study with cluster modeling[J]. Comput Mater Sci, 2016,111:430-442. doi: 10.1016/j.commatsci.2015.09.002

    25. [25]

      JAMES O O, MANDAL S, ALELE N, CHOWDHURY B, MAITY S. Lower alkanes dehydrogenation:Strategies and reaction routes to corresponding alkenes[J]. Fuel Process Technol, 2016,149:239-255. doi: 10.1016/j.fuproc.2016.04.016

    26. [26]

      DELLEY B. From molecules to solids with the DMol3 approach[J]. J Chem Phys, 2000,113(18):7756-7764. doi: 10.1063/1.1316015

    27. [27]

      PERDEW J P, CHEVARY J A, VOSKO S H, PEDERSON M R, SINGH D J, PHYS F C. Erratum:Atoms, Molecules, Solids, And Surfaces:Applications of the Generalized Gradient Approximation for Exchange and Correlation[M]. Phys Rev B:Condens Matter, 1993.

    28. [28]

      WANG B, WEI X, XIE K. Study on reaction of N-methyl-2-pyrrolidinone with carbon disulfide using density functional theory[J]. J Chem Ind Eng, 2004,55(4):569-574.

    29. [29]

      CLEMENS A H, MATHESON T W, ROGERS D E. Low temperature oxidation studies of dried new zealand coals[J]. Fuel, 1991,70(2):215-221. doi: 10.1016/0016-2361(91)90155-4

    30. [30]

      GUO W, TIAN W Q, LIAN X, LIU F L, ZHOU M, XIAO P, ZHANG Y H. A comparison of the dominant pathways for the methanol dehydrogenation to CO on Pt 7, and Pt 7-x Ni x, (x=1, 2, 3) bimetallic clusters:A DFT study[J]. Comput Theor Chem, 2014,1032(5):73-83.  

  • 加载中
    1. [1]

      Xue Liu Lipeng Wang Luling Li Kai Wang Wenju Liu Biao Hu Daofan Cao Fenghao Jiang Junguo Li Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049

    2. [2]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    3. [3]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    4. [4]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    5. [5]

      Ling Liu Haibin Wang Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080

    6. [6]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    7. [7]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    8. [8]

      Tong Zhou Jun Li Zitian Wen Yitian Chen Hailing Li Zhonghong Gao Wenyun Wang Fang Liu Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005

    9. [9]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    10. [10]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    11. [11]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    12. [12]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    13. [13]

      Yaqian Duan Juan Su Meiyu Lin Yuxin Fang Wenyi Liang . Exploration of the Implementation Path of Ideological and Political Education in the “Dual-Track Teaching” Model: a Case Study of Analytical Chemistry Experiment. University Chemistry, 2024, 39(2): 181-188. doi: 10.3866/PKU.DXHX202307024

    14. [14]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    15. [15]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

    16. [16]

      Lihui Jiang Wanrong Dong Hua Yang Yongqing Xia Hongjian Peng Jun Yuan Xiaoqian Hu Zihan Zeng Yingping Zou Yiming Luo . Study on Extraction of p-Hydroxyacetophenone. University Chemistry, 2024, 39(11): 259-268. doi: 10.12461/PKU.DXHX202402056

    17. [17]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    18. [18]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    19. [19]

      Yuting Zhang Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037

    20. [20]

      Ruitong Zhang Zhiqiang Zeng Xiaoguang Zhang . Improvement of Ethyl Acetate Saponification Reaction and Iodine Clock Reaction Experiments. University Chemistry, 2024, 39(8): 197-203. doi: 10.3866/PKU.DXHX202312004

Metrics
  • PDF Downloads(15)
  • Abstract views(6077)
  • HTML views(753)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return