
Preparation of a novel composite electrode based on N-doped TiO2-coated NaY zeolite membrane and its photoelectrocatalytic performance
-
关键词:
- Zeolite membrane
- / Nanocomposites
- / Photoelectrocatalysis
- / NaY
- / TiO2
English
Preparation of a novel composite electrode based on N-doped TiO2-coated NaY zeolite membrane and its photoelectrocatalytic performance
-
Key words:
- Zeolite membrane
- / Nanocomposites
- / Photoelectrocatalysis
- / NaY
- / TiO2
-
-
-
[1] E.R.A. Ferraz, G.A.R. Oliveira, M.D. Grando, et al., Photoelectrocatalysis based on Ti/TiO2 nanotubes removes toxic properties of the azo dyes Disperse Red 1, Disperse Red 13 and Disperse Orange 1 from aqueous chloride samples, J. Environ. Manage. 124(2013) 108-114.[1] E.R.A. Ferraz, G.A.R. Oliveira, M.D. Grando, et al., Photoelectrocatalysis based on Ti/TiO2 nanotubes removes toxic properties of the azo dyes Disperse Red 1, Disperse Red 13 and Disperse Orange 1 from aqueous chloride samples, J. Environ. Manage. 124(2013) 108-114.
-
[2] S. Gupta, V. Subramanian, Encapsulating Bi2Ti2O7(BTO) with Reduced Graphene Oxide (RGO):an effective strategy to enhance photocatalytic and photoelectrocatalytic activity of BTO, ACS Appl. Mater. (Ⅰ)nterfaces 6(2014) 18597-18608.[2] S. Gupta, V. Subramanian, Encapsulating Bi2Ti2O7(BTO) with Reduced Graphene Oxide (RGO):an effective strategy to enhance photocatalytic and photoelectrocatalytic activity of BTO, ACS Appl. Mater. (Ⅰ)nterfaces 6(2014) 18597-18608.
-
[3] P.A. Carneiro, M.E. Osugi, C.S. Fugivara, et al., Evaluation of different electrochemical methods on the oxidation and degradation of Reactive Blue 4 in aqueous solution, Chemosphere 59(2005) 431-439.[3] P.A. Carneiro, M.E. Osugi, C.S. Fugivara, et al., Evaluation of different electrochemical methods on the oxidation and degradation of Reactive Blue 4 in aqueous solution, Chemosphere 59(2005) 431-439.
-
[4] D.Y. Wu, M.C. Long, Realizing visible-light-induced self-cleaning property of cotton through coating N-TiO2 film and loading Ag(Ⅰ) particles, ACS Appl. Mater. (Ⅰ)nterfaces 3(2011) 4770-4774.[4] D.Y. Wu, M.C. Long, Realizing visible-light-induced self-cleaning property of cotton through coating N-TiO2 film and loading Ag(Ⅰ) particles, ACS Appl. Mater. (Ⅰ)nterfaces 3(2011) 4770-4774.
-
[5] C.X. Lei, Z.D. Feng, H. Zhou, Visible-light-driven photogenerated cathodic protection of stainless steel by liquid-phase-deposited TiO2 films, Electrochim. Acta 68(2012) 134-140.[5] C.X. Lei, Z.D. Feng, H. Zhou, Visible-light-driven photogenerated cathodic protection of stainless steel by liquid-phase-deposited TiO2 films, Electrochim. Acta 68(2012) 134-140.
-
[6] J.R. Huang, X. Tan, T. Yu, L. Zhao, W.L. Hu, Enhanced photoelectrocatalytic and photoelectrochemical properties by high-reactive TiO2/SrTiO3 hetero-structured nanotubes with dominant {001} facet of anatase TiO2, Electrochim. Acta 146(2014) 278-287.[6] J.R. Huang, X. Tan, T. Yu, L. Zhao, W.L. Hu, Enhanced photoelectrocatalytic and photoelectrochemical properties by high-reactive TiO2/SrTiO3 hetero-structured nanotubes with dominant {001} facet of anatase TiO2, Electrochim. Acta 146(2014) 278-287.
-
[7] M. Zhang, C.Z. Yang, W.H. Pu, et al., Liquid phase deposition of WO3/TiO2 heterojunction films with high photoelectrocatalytic activity under visible light irradiation, Electrochim. Acta 148(2014) 180-186.[7] M. Zhang, C.Z. Yang, W.H. Pu, et al., Liquid phase deposition of WO3/TiO2 heterojunction films with high photoelectrocatalytic activity under visible light irradiation, Electrochim. Acta 148(2014) 180-186.
-
[8] L. Wu, F. Li, Y.Y. Xu, et al., Plasmon-induced photoelectrocatalytic activity of Au nanoparticles enhanced TiO2 nanotube arrays electrodes for environmental remediation, Appl. Catal., B:Environ. 164(2015) 217-224.[8] L. Wu, F. Li, Y.Y. Xu, et al., Plasmon-induced photoelectrocatalytic activity of Au nanoparticles enhanced TiO2 nanotube arrays electrodes for environmental remediation, Appl. Catal., B:Environ. 164(2015) 217-224.
-
[9] K. Yang, W.H. Pu, Y.B. Tan, et al., Enhanced photoelectrocatalytic activity of Crdoped TiO2 nanotubes modified with polyaniline, Mater. Sci. Semicond. Process. 27(2014) 777-784.[9] K. Yang, W.H. Pu, Y.B. Tan, et al., Enhanced photoelectrocatalytic activity of Crdoped TiO2 nanotubes modified with polyaniline, Mater. Sci. Semicond. Process. 27(2014) 777-784.
-
[10] G.S. Wu, J.P. Wang, D.F. Thomas, A.C. Chen, Synthesis of F-doped flower-like TiO2 nanostructures with high photoelectrochemical activity, Langmuir 24(2008) 3503-3509.[10] G.S. Wu, J.P. Wang, D.F. Thomas, A.C. Chen, Synthesis of F-doped flower-like TiO2 nanostructures with high photoelectrochemical activity, Langmuir 24(2008) 3503-3509.
-
[11] N. Lu, X. Quan, J.Y. Li, et al., Fabrication of boron-doped TiO2 nanotube array electrode and investigation of its photoelectrochemical capability, J. Phys. Chem. C 111(2007) 11836-11842.[11] N. Lu, X. Quan, J.Y. Li, et al., Fabrication of boron-doped TiO2 nanotube array electrode and investigation of its photoelectrochemical capability, J. Phys. Chem. C 111(2007) 11836-11842.
-
[12] X.T. Hong, Z.P. Wang, W.M. Cai, et al., Visible-light-activated nanoparticle photocatalyst of iodine-doped titanium dioxide, Chem. Mater. 17(2005) 1548-1552.[12] X.T. Hong, Z.P. Wang, W.M. Cai, et al., Visible-light-activated nanoparticle photocatalyst of iodine-doped titanium dioxide, Chem. Mater. 17(2005) 1548-1552.
-
[13] K.L. Yeung, W. Han, Zeolites and mesoporous materials in fuel cell applications, Catal. Today 236(2014) 182-205.[13] K.L. Yeung, W. Han, Zeolites and mesoporous materials in fuel cell applications, Catal. Today 236(2014) 182-205.
-
[14] A.Y. Shan, T.(Ⅰ).M. Ghazi, S.A. Rashid, (Ⅰ)mmobilisation of titanium dioxide onto supporting materials in heterogeneous photocatalysis:a review, Appl. Catal. A:Gen. 389(2010) 1-8.[14] A.Y. Shan, T.(Ⅰ).M. Ghazi, S.A. Rashid, (Ⅰ)mmobilisation of titanium dioxide onto supporting materials in heterogeneous photocatalysis:a review, Appl. Catal. A:Gen. 389(2010) 1-8.
-
[15] E.C. Su, B.S. Huang, C.C. Liu, M.Y. Wey, Photocatalytic conversion of simulated EDTA wastewater to hydrogen by pH-resistant Pt/TiO2-activated carbon photocatalysts, Renewable Energy 75(2015) 266-271.[15] E.C. Su, B.S. Huang, C.C. Liu, M.Y. Wey, Photocatalytic conversion of simulated EDTA wastewater to hydrogen by pH-resistant Pt/TiO2-activated carbon photocatalysts, Renewable Energy 75(2015) 266-271.
-
[16] S. Basha, C. Barr, D. Keane, et al., On the adsorption/photodegradation of amoxicillin in aqueous solutions by an integrated photocatalytic adsorbent ((Ⅰ)PCA):experimental studies and kinetics analysis, Photochem. Photobiol. Sci. 10(2011) 1014-1022.[16] S. Basha, C. Barr, D. Keane, et al., On the adsorption/photodegradation of amoxicillin in aqueous solutions by an integrated photocatalytic adsorbent ((Ⅰ)PCA):experimental studies and kinetics analysis, Photochem. Photobiol. Sci. 10(2011) 1014-1022.
-
[17] C.Y. Kuo, C.Y. Pai, C.C. He, C.J. Lin, C.M. Cheng, Photodegradation of aqueous reactive dye using TiO2/zeolite admixtures in a continuous flow reactor, Water Sci. Technol. 65(2012) 1963-1969.[17] C.Y. Kuo, C.Y. Pai, C.C. He, C.J. Lin, C.M. Cheng, Photodegradation of aqueous reactive dye using TiO2/zeolite admixtures in a continuous flow reactor, Water Sci. Technol. 65(2012) 1963-1969.
-
[18] C. Wang, H.S. Shi, Y. Li, Synthesis and characteristics of natural zeolite supported Fe3+-TiO2 photocatalysts, Appl. Surf. Sci. 257(2011) 6873-6877.[18] C. Wang, H.S. Shi, Y. Li, Synthesis and characteristics of natural zeolite supported Fe3+-TiO2 photocatalysts, Appl. Surf. Sci. 257(2011) 6873-6877.
-
[19] F.F. Li, Y.S. Jiang, L.X. Yu, et al., Surface effect of natural zeolite (clinoptilolite) on the photocatalytic activity of TiO2, Appl. Surf. Sci. 252(2005) 1410-1416.[19] F.F. Li, Y.S. Jiang, L.X. Yu, et al., Surface effect of natural zeolite (clinoptilolite) on the photocatalytic activity of TiO2, Appl. Surf. Sci. 252(2005) 1410-1416.
-
[20] S. Liu, M. Lim, R. Amal, TiO2-loaded natural zeolite:rapid humic acid adsorption and effective photocatalytic regeneration, Chem. Eng. Sci. 105(2014) 46-52.[20] S. Liu, M. Lim, R. Amal, TiO2-loaded natural zeolite:rapid humic acid adsorption and effective photocatalytic regeneration, Chem. Eng. Sci. 105(2014) 46-52.
-
[21] D. Kanakaraju, J. Kockler, C.A. Motti, B.D. Glass, M. Oelgemöller, Titanium dioxide/zeolite integrated photocatalytic adsorbents for the degradation of amoxicillin, Appl. Catal., B:Environ. 166-167(2015) 45-55.[21] D. Kanakaraju, J. Kockler, C.A. Motti, B.D. Glass, M. Oelgemöller, Titanium dioxide/zeolite integrated photocatalytic adsorbents for the degradation of amoxicillin, Appl. Catal., B:Environ. 166-167(2015) 45-55.
-
[22] M. Abrishamkar, F.B. Kahkeshi, Synthesis and characterization of nano-ZSM-5 zeolite and its application for electrocatalytic oxidation of formaldehyde over modified carbon paste electrode with ion exchanged synthesized zeolite in alkaline media, Microporous Mesoporous Mater. 167(2013) 51-54.[22] M. Abrishamkar, F.B. Kahkeshi, Synthesis and characterization of nano-ZSM-5 zeolite and its application for electrocatalytic oxidation of formaldehyde over modified carbon paste electrode with ion exchanged synthesized zeolite in alkaline media, Microporous Mesoporous Mater. 167(2013) 51-54.
-
[23] T. Rohani, M. Ali Taher, A new method for electrocatalytic oxidation of ascorbic acid at the Cu(Ⅱ) zeolite-modified electrode, Talanta 78(2009) 743-747.[23] T. Rohani, M. Ali Taher, A new method for electrocatalytic oxidation of ascorbic acid at the Cu(Ⅱ) zeolite-modified electrode, Talanta 78(2009) 743-747.
-
[24] M. Mazloum Arkadani, Z. Akrami, H. Kazemian, H.R. Zare, Electrocatalytic characteristics of uric acid oxidation at graphite-zeolite-modified electrode doped with iron(Ⅲ), J. Electroanal. Chem. 586(2006) 31-38.[24] M. Mazloum Arkadani, Z. Akrami, H. Kazemian, H.R. Zare, Electrocatalytic characteristics of uric acid oxidation at graphite-zeolite-modified electrode doped with iron(Ⅲ), J. Electroanal. Chem. 586(2006) 31-38.
-
[25] A. Nezamzadeh-Ejhieh, H.S. Hashemi, Voltammetric determination of cysteine using carbon paste electrode modified with Co(Ⅱ)-Y zeolite, Talanta 88(2012) 201-208.[25] A. Nezamzadeh-Ejhieh, H.S. Hashemi, Voltammetric determination of cysteine using carbon paste electrode modified with Co(Ⅱ)-Y zeolite, Talanta 88(2012) 201-208.
-
[26] Z.L. Cheng, H.Q. Lin, Z.S. Chao, H.L. Wan, NaY zeolite membrane prepared by using pre-absorbed nanosized NaY zeolite synthesized by microwave heating, Chem. J. Chin. Univ. 24(2003) 1857-1861.[26] Z.L. Cheng, H.Q. Lin, Z.S. Chao, H.L. Wan, NaY zeolite membrane prepared by using pre-absorbed nanosized NaY zeolite synthesized by microwave heating, Chem. J. Chin. Univ. 24(2003) 1857-1861.
-
[27] D. Papoulis, S. Komarneni, A. Nikolopoulou, et al., Palygorskite-and halloysite-TiO2 nanocomposites:synthesis and photocatalytic activity, Appl. Clay Sci. 50(2010) 118-124.[27] D. Papoulis, S. Komarneni, A. Nikolopoulou, et al., Palygorskite-and halloysite-TiO2 nanocomposites:synthesis and photocatalytic activity, Appl. Clay Sci. 50(2010) 118-124.
-
[28] Y.X. Jiang, S.G. Sun, S.P. Chen, N. Ding, Enhancement of (Ⅰ)R absorption of CO adsorbed on palladium-loading zeolite thin film electrode, Chem. J. Chin. Univ. 22(2011) 1850-1863.[28] Y.X. Jiang, S.G. Sun, S.P. Chen, N. Ding, Enhancement of (Ⅰ)R absorption of CO adsorbed on palladium-loading zeolite thin film electrode, Chem. J. Chin. Univ. 22(2011) 1850-1863.
-
[29] S. Sakthivel, M. Janczarek, H. Kisch, Visible light activity and photoelectrochemical properties of nitrogen-doped TiO2, J. Phys. Chem. B 108(2004) 19384-19387.[29] S. Sakthivel, M. Janczarek, H. Kisch, Visible light activity and photoelectrochemical properties of nitrogen-doped TiO2, J. Phys. Chem. B 108(2004) 19384-19387.
-
[30] O. Diwald, T.L. Thompson, T. Zubkov, et al., Photochemical activity of nitrogendoped rutile TiO2(110) in visible light, J. Phys. Chem. B 108(2004) 6004-6008.[30] O. Diwald, T.L. Thompson, T. Zubkov, et al., Photochemical activity of nitrogendoped rutile TiO2(110) in visible light, J. Phys. Chem. B 108(2004) 6004-6008.
-
-

计量
- PDF下载量: 0
- 文章访问数: 890
- HTML全文浏览量: 25