Citation: Wang Nan, Chai Guobi, Wang Dingzhong, Ji Lingbo, Zhao Wuduo, Cui Kai, Zong Yongli, Fan Wu, Liu Junhui. Astringent Compounds and Related Transduction Mechanisms[J]. Chemistry, ;2016, 79(12): 1134-1138,1133. shu

Astringent Compounds and Related Transduction Mechanisms

  • Corresponding author: Fan Wu,  Liu Junhui, 
  • Received Date: 26 May 2016
    Available Online: 18 August 2016

    Fund Project:

  • Astringent compounds are one of the predominant factors to the quality of foods and beverages. Research on astringency perception has attracted great interest over past decades due to its positive effects on the human body including antibacterial, anticarcinogenic, antioxidant, and neuroprotective effects. Astringency is described as a ‘drying, roughing, puckering and astringent sensation’ in the mouth following consumption of astringent compounds such as polyphenols. It is debated whether astringency is a taste sensation or tactile sensation, or a trigeminal sensation analogous to spicy taste. Studies on the mechanisms of astringency are based on protein precipitation theory. This paper gives a brief introduction of the astringent compounds and mechanisms of astringency perception.
  • 加载中
    1. [1]

      [1] C Clark, H Lawless. Chem. Senses., 1994, 19: 583~594.

    2. [2]

      [2] Standard definitions of terms relating to sensory evaluation of materials and products. Annual book of ASTM standards. Philadelphia: American Society for Testing and Materials, 2004.

    3. [3]

      [3] M Das, D R Bickers, H Mukhtar. Int. J. Cancer., 1989, 43: 468~470.

    4. [4]

      [4] M Athar, W A Khan, H Mukhtar. Cancer Res., 1989, 49: 5784~5788.

    5. [5]

      [5] A Scalbert. Phytochem., 1991, 30, 3875~3883.

    6. [6]

      [6] P L Teissedre, E N Frankel, A L Waterhouse et al. J. Sci. Food Agric., 1996, 70: 55~61.

    7. [7]

      [7] K Chung, T Y Wong, C Wei et al. Crit. Rev. Food Sci. Nutr., 1998, 38: 421~464.

    8. [8]

      [8] A Simonyi, D Woods, A Y Sun et al. Alcohol Clin. Exp. Res., 2002, 26: 352~357.

    9. [9]

      [9] M Ozeck, P Brust, H Xu et al. Eur. J. Pharmacol., 2004, 489: 139~149.

    10. [10]

      [10] S Ugawa, T Yamamoto, T Ueda et al. J. Neurosci., 2003, 23: 3616~3622.

    11. [11]

      [11] S Simon, W L Hall, S S Schiffman. Pharm. Biochem. Behav., 1992, 43: 271~283.

    12. [12]

      [12] Y Kawamura, M Funakoshi, Y Kasahara et al. Jpn. J. Physiol., 1969, 19: 851~865.

    13. [13]

      [13] S S Schiffman, M S Suggs, A L Sostman et al. Physiol. Behav., 1992, 51: 55~63.

    14. [14]

      [14] S Iiyama, S Ezaki, K Toko et al. Sens. Actuat. B Chem., 1995, 24: 75~79.

    15. [15]

      [15] E C Bate-Smith. Food, 1954, 23: 124~127.

    16. [16]

      [16] B Lyman, B Green. Chem. Senses, 1990, 15: 151~164.

    17. [17]

      [17] P Breslin, M Gilmore, G Beauchamp et al. Chem. Senses, 1993, 18: 405~417.

    18. [18]

      [18] J Lim, H T Lawless. Physiol. Behav., 2005, 85: 308~313.

    19. [19]

      [19] G Luck, H Liao, N J Murray et al. Phytochemistry, 1994, 37: 357~371.

    20. [20]

      [20] K S Feldman, A Sambandam, S T Lemon et al. Phytochemistry, 1999, 51: 867~872.

    21. [21]

      [21] E Jöbstl, J O'Connell, J P Fairclough et al. Biomacromolecules, 2004, 5: 942~949.

    22. [22]

      [22] N Schöbel, D Radtke, J Kyereme et al. Chem. Senses, 2014, 39: 471~87.

    23. [23]

      [23] M A Joslyn, J L Goldstein. Adv. Food Res., 1964, 13: 179~217.

    24. [24]

      [24] R A Arnold, A C Noble, V L Singleton. J. Agric. Food Chem., 1980, 28: 675~678.

    25. [25]

      [25] S Courregelongue, P Schlich, A C Noble. Food Qual. Pref., 1999, 10: 273~279.

    26. [26]

      [26] M Naish, M N Clifford, G G Birch. J. Sci. Food Agric., 1993, 61: 57~64.

    27. [27]

      [27] H Peleg, K Gacon, P Schlich et al. J. Sci. Food Agric., 1999, 79: 1123~1128.

    28. [28]

      [28] K H Gustavson. J. Polym. Sci., 1954, 12: 317~324.

    29. [29]

      [29] J L Goldstein, T Swain. Phytochemistry, 1963, 2: 371~383.

    30. [30]

      [30] W D Loomis, J Battaile. Phytochemistry, 1966, 5: 423~438.

    31. [31]

      [31] W D Loomis. Methods Enzymol., 1974, 31: 528~544.

    32. [32]

      [32] E Haslam. Biochem. J., 1974, 139: 285~288.

    33. [33]

      [33] A E Hagerman, L G Butler. J. Biol. Chem., 1981, 256: 4494~4497.

    34. [34]

      [34] C Simon, K Barathieu, M Laguerre et al. Biochemistry, 2003, 42: 10385~10395.

    35. [35]

      [35] R A Frazier, A Papadopoulou, R J Green. J. Pharm. Biomed. Anal., 2006, 41: 1602~1605.

    36. [36]

      [36] J L Goldstein, T Swain. Phytochemistry, 1965, 4: 185~192.

    37. [37]

      [37] H I Oh, J E Hoff, G S Armstrong et al. J. Agric. Food Chem., 1980, 28: 394~398.

    38. [38]

      [38] T Hatano, R W Hemingway. Chem. Commun., 1996: 2537~2538.

    39. [39]

      [39] K Wroblewski, R Muhandiram, A Chakrabartty et al. Eur. J. Biochem., 2001, 268: 4384~4397.

    40. [40]

      [40] E Jobstl, J R Howse, J P A Fairclough et al. J. Agric. Food Chem., 2006, 54: 4077~4081.

    41. [41]

      [41] K Yokotsuka, V L Singleton. Am. J. Enol. Vitic., 1995, 46: 329~338.

    42. [42]

      [42] N J Baxter, T H Lilley, E Haslam et al. Biochemistry, 1997, 36: 5566~5577.

    43. [43]

      [43] H Kawamoto, F Nakatsubo, K Murakami. Phytochemistry, 1995, 40: 1503~1505.

    44. [44]

      [44] A J Charlton, N J Baxter, M L Khan et al. J. Agric. Food Chem., 2002, 50: 1593~1601.

    45. [45]

      [45] U Fischer, R B Boulton, A C Noble. Food Qual. Pref., 1994, 5: 55~64.

    46. [46]

      [46] S Kallithraka, J Bakker, M N Clifford. J. Agric. Food Chem., 1997, 45: 2211~2216.

    47. [47]

      [47] H Peleg, K K Bodine, A C Noble. Chem. Senses, 1998, 23: 371~378.

    48. [48]

      [48] H Peleg, A C Noble. Food Qual. Pref., 1999, 100: 343~347.

    49. [49]

      [49] R A Sowalsky, A C Noble. Chem. Senses, 1998, 23: 343~349.

    50. [50]

      [50] S Martin, R M Pangborn. J. Dent. Res. 1971, 50: 485~490.

    51. [51]

      [51] R J Hyde, R M Pangborn. Am. J. Enol. Vitic., 1978, 29: 87~91.

    52. [52]

      [52] S M Rubico, M R McDaniel. Chem. Senses, 1992, 17: 273~289.

    53. [53]

      [53] P Hartwig, M R Mc Daniel. J. Food Sci., 1995, 60: 384~388.

    54. [54]

      [54] C H Corrigan, H T Lawless. Chem. Senses, 1995, 20:593~600.

    55. [55]

      [55] C A Lee, B Ismail, Z M Vickers. J. Food Sci. 2012, 77: 381~387.

    56. [56]

      [56] H T Lawless, J Horne, P Giasi. Chem. Senses, 1996, 21: 397~403.

    57. [57]

      [57] G A Trapp. J. Environ. Pathol. Tox., 1985, 6, 15.

    58. [58]

      [58] M W Dodds, D A Johnson, C K Yeh. J. Dent. Res., 2005, 33: 223~233.

    59. [59]

      [59] Q Yan, A Bennick. Biochem. J., 1995, 311: 341~347.

    60. [60]

      [60] Y Lu, A Bennick. Arch. Oral Biol., 1998, 43:717~728.

    61. [61]

      [61] V de Freitas, N Mateus. J. Sci. Food Agric., 2001, 82: 113~119.

    62. [62]

      [62] A Gambuti, A Rinaldi, R Pessina et al. Food Chem., 2006, 97: 614~620.

    63. [63]

      [63] N Condelli, A Dinnella, A Cerone et al. Food Qual. Pref., 2006, 17: 96~107.

    64. [64]

      [64] B L Slomiany, V L N Murty. J Piotrowski et al. Gen. Pharmacol., 1996, 27: 761~771.

    65. [65]

      [65] H Inoue, K Ono, W Masuda et al. J. Oral Biosci., 2008, 50: 134~141.

    66. [66]

      [66] H Boze, T Marlin, D Durand et al. Biophys. J., 2010, 99: 656~665.

    67. [67]

      [67] R Pramanik, S M Osailan, S J Challacombe et al. Eur. J. Oral Sci., 2010, 118: 245~253.

    68. [68]

      [68] S D Bradway, E J Bergey, P C Jones et al. Biochem. J., 1989, 261: 887~896.

    69. [69]

      [69] A J Charlton, N J Baxter, M L Khan et al. J. Agric. Food Chem., 2002, 50: 593~1601.

    70. [70]

      [70] J F Prinz, R A de Wijk, L Huntjens. Food Hydrocoll., 2006, 21: 402~408.

    71. [71]

      [71] N Brossard, H Cai, F Osorio et al. J. Texture Stud., 2016, doi: 10.1111/jtxs.12184

    72. [72]

      [72] S Ma, H Lee, Y Liang et al. Angew. Chem. Int. Ed., 2016, 55: 5793~5797.

    73. [73]

      [73] M Kurogi, M Miyashita, Y Emoto et al. Chem. Senses., 2012, 37: 167~177.

    74. [74]

      [74] H L Gibbins, G H Carpenter. J. Texture Stud., 2013, 44: 364~375.

    75. [75]

      [75] G Ares, C Barreiro, R Deliza et al. Food Res. Int., 2009, 42: 871~878.

    76. [76]

      [76] B J Lyman, B G Green. Chem. Senses, 1990, 15: 151~164.

  • 加载中
    1. [1]

      Xinran Zhang Siqi Liu Yichi Chen Qingli Zou Qinghong Xu Yaqin Huang . From Protein to Energy Storage Materials: Edible Gelatin Jelly Electrolyte. University Chemistry, 2025, 40(7): 255-266. doi: 10.12461/PKU.DXHX202408104

    2. [2]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    3. [3]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

    4. [4]

      Yongqing Kuang Jie Liu Jianjun Feng Wen Yang Shuanglian Cai Ling Shi . Experimental Design for the Two-Step Synthesis of Paracetamol from 4-Hydroxyacetophenone. University Chemistry, 2024, 39(8): 331-337. doi: 10.12461/PKU.DXHX202403012

    5. [5]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    6. [6]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    7. [7]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    8. [8]

      Xiyuan Su Zhenlin Hu Ye Fan Xianyuan Liu Xianyong Lu . Change as You Want: Multi-Responsive Superhydrophobic Intelligent Actuation Material. University Chemistry, 2024, 39(5): 228-237. doi: 10.3866/PKU.DXHX202311059

    9. [9]

      Zongpei Zhang Yanyang Li Yanan Si Kai Li Shuangquan Zang . Developing a Chemistry Experiment Center Employing a Multifaceted Approach to Serve High-Quality Laboratory Education. University Chemistry, 2024, 39(7): 13-19. doi: 10.12461/PKU.DXHX202404041

    10. [10]

      Ruilin Han Xiaoqi Yan . Comparison of Multiple Function Methods for Fitting Surface Tension and Concentration Curves. University Chemistry, 2024, 39(7): 381-385. doi: 10.3866/PKU.DXHX202311023

    11. [11]

      Xingyuan Lu Yutao Yao Junjing Gu Peifeng Su . Energy Decomposition Analysis and Its Application in the Many-Body Effect of Water Clusters. University Chemistry, 2025, 40(3): 100-107. doi: 10.12461/PKU.DXHX202405074

    12. [12]

      Weijie Yang Mansheng Chen Chen Xu Fujian Xu . Hydroxyl-Rich Polycations: Innovative Materials Empowering Life and Health. University Chemistry, 2025, 40(9): 332-343. doi: 10.12461/PKU.DXHX202410072

    13. [13]

      Yanglin JiangMingqing ChenMin LiangYige YaoYan ZhangPeng WangJianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 2309027-0. doi: 10.3866/PKU.WHXB202309027

    14. [14]

      Chi Zhang Yi Xu Xiaopeng Guo Zian Jie Ling Li . 五彩斑斓的秘密——物质显色机理. University Chemistry, 2025, 40(6): 266-275. doi: 10.12461/PKU.DXHX202407061

    15. [15]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    16. [16]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

    17. [17]

      Mengyang LIHao XUZhonghao NIUChunhua GONGWeihui ZHONGJingli XIE . Highly effective catalytic synthesis of β-amino alcohols by using viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1294-1300. doi: 10.11862/CJIC.20250080

    18. [18]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    19. [19]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    20. [20]

      Conghao Shi Ranran Wang Juli Jiang Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034

Metrics
  • PDF Downloads(0)
  • Abstract views(479)
  • HTML views(36)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return