Citation: Li Xiaolu, Guo Jing, Zhai Qian, Yi Gang. The Applications of Isothermal Nucleic Acid Amplification Technique in Electrochemical Biosensors[J]. Chemistry, ;2016, 79(12): 1127-1133. shu

The Applications of Isothermal Nucleic Acid Amplification Technique in Electrochemical Biosensors

  • Corresponding author: Yi Gang, 
  • Received Date: 16 May 2016
    Available Online: 1 August 2016

  • The detection of biomolecules in the fields of clinical diagnosis, gene therapy and mutation analysis has become increasingly important. Therefore, it is significant for establishing a simple, rapid and sensitive detection method. Electrochemical biosensor has gained increasing interest because of its advantages such as simplicity, portability, easy to operate and low cost in the field of biomolecules detection. In order to improve the sensitivity of biosensors, different isothermal nucleic acid amplification techniques have been used in the construction of electrochemical biosensors. In this paper, we introduced the principle of electrochemical sensor briefly, summarize the main isothermal nucleic acid amplification techniques applied in electrochemical biosensors emphatically and compare the advantages and disadvantages of each technique.
  • 加载中
    1. [1]

      [1] G T Walker, M C Little, J G Nadeau et al. PNAS, 1992, 89(1): 392~396.

    2. [2]

      [2] J L He, Z S Wu, H Zhou et al. Anal. Chem., 2010, 82(4): 1358~1364.

    3. [3]

      [3] Q Chen, Z Bian, M Chen et al. Biosens. Bioelectron., 2009, 24(12): 3412~3418.

    4. [4]

      [4] C Yang, K Shi, B Dou et al. ACS Appl. Mater. Interf., 2015, 7(2): 1188~1193.

    5. [5]

      [5] W Ma, B Situ, W Lv et al. Biosens. Bioelectron., 2016, 80: 344~351.

    6. [6]

      [6] T Murakami, J Sumaoka, M Komiyama. Nucleic. Acids Res., 2009, 37(3): e19~e19.

    7. [7]

      [7] M M Ali, F Li, Z Zhang et al. Chem. Soc. Rev., 2014, 43(10): 3324~3341.

    8. [8]

      [8] Z S Wu, H Zhou, S Zhang et al. Anal. Chem., 2010, 82(6): 2282~2289.

    9. [9]

      [9] C Ding, N Wang, J Zhang et al. Biosens. Bioelectron., 2013, 42: 486~491.

    10. [10]

      [10] Y Guo, Y Wang, S Liu et al. Biosens. Bioelectron., 2016, 75: 315~319.

    11. [11]

      [11] Q Wang, H Zheng, X Gao et al. Chem. Commun., 2013, 49(97): 11418~11420.

    12. [12]

      [12] L Yang, Y Zhang, R Li et al. Biosens. Bioelectron., 2015, 70: 268~274.

    13. [13]

      [13] Q Wang, C Yang, Y Xiang et al. Biosens. Bioelectron., 2014, 55: 266~271.

    14. [14]

      [14] S Bi, T Zhao, B Luo et al. Chem. Commun., 2013, 49(61): 6906~6908.

    15. [15]

      [15] W Cheng, W Zhang, Y Yan et al. Biosens. Bioelectron., 2014, 62: 274~279.

    16. [16]

      [16] T Notomi, H Okayama, H Masubuchi et al. Nucleic. Acids Res., 2000, 28(12): e63~e63.

    17. [17]

      [17] M U Ahmed, M Saito, M M Hossain et al. Analyst, 2009, 134(5): 966~972.

    18. [18]

      [18] W Sun, P Qin, H Gao et al. Biosens. Bioelectron., 2010, 25(6): 1264~1270.

    19. [19]

      [19] S Xie, Y Chai, Y Yuan et al. Biosens. Bioelectron., 2014, 55: 324~329.

    20. [20]

      [20] N Nakamura, K Ito, M Takahashi et al. Anal. Chem., 2007, 79(24): 9484~9493.

    21. [21]

      [21] J Li, J Macdonald. Biosens. Bioelectron., 2015, 64: 196~211.

    22. [22]

      [22] S Moura-Melo, R Miranda-Castro, N de-los-Santos-Álvarez et al. Anal. Chem., 2015, 87(16): 8547~8554.

    23. [23]

      [23] L An, W Tang, T A Ranalli et al. J. Biol. Chem., 2005, 280(32): 28952~28958.

    24. [24]

      [24] P Gill, M Amini, A Ghaemi et al. Diagn. Microbiol. Infect. Dis., 2007, 59(3): 243~249.

    25. [25]

      [25] E Torres-Chavolla, E C Alocilja. Biosens. Bioelectron., 2011, 26(11): 4614~4618.

    26. [26]

      [26] S Barreda-García, M J González-Álvarez, N de-los-Santos-Álvarez et al. Biosens. Bioelectron., 2015, 68: 122~128.

    27. [27]

      [27] C Lin, Y Wu, F Luo et al. Biosens. Bioelectron., 2014, 59: 365~369.

    28. [28]

      [28] X Zuo, F Xia, Y Xiao et al. J. Am. Chem. Soc., 2010, 132(6): 1816~1818.

    29. [29]

      [29] S Liu, Y Wang, C Zhang et al. Chem. Commun., 2013, 49(23): 2335~2337.

    30. [30]

      [30] D Wu, B C Yin, B C Ye. Biosens. Bioelectron., 2011, 28(1): 232~238.

    31. [31]

      [31] S Liu, C Wang, C Zhang et al. Anal. Chem., 2013, 85(4): 2282~2288.

    32. [32]

      [32] F Xuan, X Luo, I M Hsing. Anal. Chem., 2012, 84(12): 5216~5220.

    33. [33]

      [33] R M Dirks, N A Pierce. PNAS, 2004, 101(43): 15275~15278.

    34. [34]

      [34] D Evanko. Nat. Methods, 2004, 1(3): 186~187.

    35. [35]

      [35] J Zhou, M Xu, D Tang et al. Chem. Commun., 2012, 48(100): 12207~12209.

    36. [36]

      [36] Y Qian, F Gao, L Du et al. Biosens. Bioelectron., 2015, 74: 483~490.

    37. [37]

      [37] S Liu, Y Wang, J Ming et al. Biosens. Bioelectron., 2013, 49: 472~477.

    38. [38]

      [38] F Xuan, I M Hsing. J. Am. Chem. Soc., 2014, 136(28): 9810~9813.

    39. [39]

      [39] L Jia, S Shi, R Ma et al. Biosens. Bioelectron., 2016, 80: 392~397.

  • 加载中
    1. [1]

      Yang MeiqingLu WangHaozi LuYaocheng YangSong Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 2310046-0. doi: 10.3866/PKU.WHXB202310046

    2. [2]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    3. [3]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    4. [4]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    5. [5]

      Ke ZhaoZhen LiuLuyao LiuChangyuan YuJingshun PanXuguang Huang . Functionalized Reflective Structure Fiber-Optic Interferometric Sensor for Trace Detection of Lead Ions. Acta Physico-Chimica Sinica, 2024, 40(4): 2304029-0. doi: 10.3866/PKU.WHXB202304029

    6. [6]

      Lin′an CAODengyue MAGang XU . Research advances in electrically conductive metal-organic frameworks-based electrochemical sensors. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 1953-1972. doi: 10.11862/CJIC.20250160

    7. [7]

      Jia-He Li Yu-Ze Liu Jia-Hui Ma Qing-Xiao Tong Jian-Ji Zhong Jing-Xin Jian . 洛芬碱衍生物的合成、化学发光与重金属离子检测. University Chemistry, 2025, 40(6): 230-237. doi: 10.12461/PKU.DXHX202407080

    8. [8]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    9. [9]

      Xiaofei LiuHe WangLi TaoWeimin RenXiaobing LuWenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008

    10. [10]

      Zhuomin Zhang Lanrui Yang Baorong Zhang Gongke Li . 化学分析全英课程思政建设初探. University Chemistry, 2025, 40(8): 58-65. doi: 10.12461/PKU.DXHX202410010

    11. [11]

      Shuhui Li Xucen Wang Yingming Pan . Exploring the Role of Electrochemical Technologies in Everyday Life. University Chemistry, 2025, 40(3): 302-307. doi: 10.12461/PKU.DXHX202406059

    12. [12]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(12): 0-0.

    13. [13]

      Yun ChenDaijie DengLi XuXingwang ZhuHenan LiChengming Sun . Covalent bond modulation of charge transfer for sensitive heavy metal ion analysis in a self-powered electrochemical sensing platform. Acta Physico-Chimica Sinica, 2026, 42(1): 100144-0. doi: 10.1016/j.actphy.2025.100144

    14. [14]

      Cen Zhou Biqiong Hong Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086

    15. [15]

      Weigang Zhu Xiaofei Ma Yun Tian Huaji Liu Fanli Lu Yalu Ma . 基于知识图谱的“无机化学与化学分析”课程信息化教学资源构建与应用研究. University Chemistry, 2025, 40(6): 9-15. doi: 10.12461/PKU.DXHX202408113

    16. [16]

      Tinghui ANDong XIANGJiaqi LIJiawei WANGShuming YUNan WANGKedi CAI . Research progress on the application of laser synthesis technology for electrochemical functional materials. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1731-1754. doi: 10.11862/CJIC.20240412

    17. [17]

      Tingting Jiang Jing Chang . Application of Ideological and Political Education in Chemical Analysis Experiment under the Background of Emerging Engineering Education: Taking the Redox Titration Experiment as an Example. University Chemistry, 2024, 39(2): 168-174. doi: 10.3866/PKU.DXHX202308007

    18. [18]

      Yang Liu Peng Chen Lei Liu . Chemistry “101 Plan”: Design and Construction of Chemical Biology Textbook. University Chemistry, 2024, 39(10): 45-51. doi: 10.12461/PKU.DXHX202407085

    19. [19]

      Tianyu Feng Guifang Jia Peng Zou Jun Huang Zhanxia Lü Zhen Gao Chu Wang . Construction of the Chemistry Biology Experiment Course in the Chemistry “101 Program”. University Chemistry, 2024, 39(10): 69-77. doi: 10.12461/PKU.DXHX202409002

    20. [20]

      Cun WANGShaohan XUYuqian ZHANGYaoyao ZHANGTao GONGRong WENYuhang LIAOYanrong REN . Terbium complex electrochemiluminescent emitters: Synthesis and application in the detection of epinephrine. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1351-1360. doi: 10.11862/CJIC.20240427

Metrics
  • PDF Downloads(0)
  • Abstract views(489)
  • HTML views(63)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return