Citation: Liu Xingpeng, Hong Tao, Huang Kama. The Polarization of Chemical Reactions under the Action of Electromagnetic Wave[J]. Chemistry, ;2016, 79(4): 377-380. shu

The Polarization of Chemical Reactions under the Action of Electromagnetic Wave

  • Corresponding author: Huang Kama, 
  • Received Date: 8 October 2015
    Available Online: 27 November 2015

    Fund Project:

  • Microwave-assisted chemical reactions have attracted interest for decades, but hot spots and thermal runaway prevent the further development of microwave heating in chemical engineering. In order to solve these problems, it is needed to study the interaction between electromagnetic wave and chemical reactions. The polarization of the chemical reactions is the basis to investigate the interaction between electromagnetic wave and chemical reactions. The expression of polarization of the polar-molecule reactions is derived with modified Smoluchowski-Debye equation. The polarization of the chemical reactions is actually a response of a linear time varying system, which is a Markov process under certain conditions. The aim of this paper is to discuss the relation between the time domain and the frequency domain representation of the polarization of chemical reactions, along with the limitations of the representation in the frequency domain.
  • 加载中
    1. [1]

      [1] R Gedye, F Smith, K Westaway et al. Tetrahed. Lett, 1986, 27:279~282.

    2. [2]

      [2] D A Jones, T P Lelyveld, S D Mavrofidis et al. Resour. Conserv. Recy., 2002, 34:75~90.

    3. [3]

      [3] T Santos, M A Valente, J Monteiro et al. Appl. Therm. Eng., 2011, 31:3255~3261.

    4. [4]

      [4] R Vadivambal, D S Jayas. Food Bioproc. Tech., 2010, 3:161~171.

    5. [5]

      [5] X Zhang, D O Hayward, D M P Mingos. Catal. Lett., 2003, 88:33~38.

    6. [6]

      [6] C O Kappe. Chem. Soc. Rev., 2008, 37:1127~1139.

    7. [7]

      [7] G Roussy, A Bennani, J M Thiebaut. J. Appl. Phys., 1987, 62:1167~1170.

    8. [8]

      [8] H Lehmann, L LaVecchia. Org. Proc. Res. Dev., 2010, 14:650~656.

    9. [9]

      [9] C O Kappe, B Pieber, D Dallinger. Angew. Chem. Int. Ed., 2013, 52:1088~1094.

    10. [10]

      [10] S Sudo, N Oshiki, N Shinyashiki et al. J. Phys. Chem. A, 2007. 111:2993~2998.

    11. [11]

      [11] S Sun, X Hu, Y Xia. Appl. Biochem. Biotech., 2012, 166:1454~1462.

    12. [12]

      [12] W Scheider. Biophys. J., 1965, 5:617~628.

    13. [13]

      [13] G Schwarz. J. Phys. Chem., 1967, 71:4021~4030.

    14. [14]

      [14] K Huang, H Zhu, L Wu. Bioresour. Technol., 2013, 131:541~544.

    15. [15]

      [15] H C Zhu, X Q Yang, K M Huang. J. Solut. Chem., 2012, 41:1729~1737.

    16. [16]

      [16] X Yang, K Huang. IEEE Trans. Geosci. Remote, 2005, 43:315~320.

    17. [17]

      [17] K M Huang, X Yang. PIER, 2008, 5:99~107.

    18. [18]

      [18] T Hong, K Huang. J. Phys. Org. Chem., 2015, 28:414~417.

    19. [19]

      [19] K Huang, T Hong. J. Phys. Chem. A, 2015, 119:8898~8902.

    20. [20]

      [20] W T Coffey, B V Paranjape. P. Roy. Soc. A-Math. Phys., 1978, 78:17~25.

    21. [21]

      [21] G H Czerlinski. Chemical relaxation, New York:Dekker, 1966.

    22. [22]

      [22] Z Sekkat, J Wood, W Knoll. J. Phys. Chem., 1995, 99:17226~17234.

    23. [23]

      [23] 李景德,沈韩,陈敏. 电介质理论. 北京:科学出版社, 2003. 63~69.

    24. [24]

      [24] S R de Groot, P Mazur. Non-equilibrium thermodynamics, North Chelmsford:Courier Corporation, 2012.

    25. [25]

      [25] C Dykstra, G Frenking, K Kim et al. Theory and applications of computational chemistry:the first forty years. Amsterdam:Elsevier, 2011.

    26. [26]

      [26] 李如生. 平衡和非平衡统计力学. 北京:清华大学出版社, 1995:171~202.

    27. [27]

      [27] N G van Kampen. Stochastic processes in physics and chemistry. Amsterdam:Elsevier, 1992.

    28. [28]

      [28] C T Chen. Linear system theory and design. New York Oxford:Oxford University Press, 1995.

  • 加载中
    1. [1]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    2. [2]

      Jinwang WuQijing XieChengliang ZhangHaifeng Shi . Rationally Designed ZnFe1.2Co0.8O4/BiVO4 S-Scheme Heterojunction with Spin-Polarization for the Elimination of Antibiotic. Acta Physico-Chimica Sinica, 2025, 41(5): 100050-0. doi: 10.1016/j.actphy.2025.100050

    3. [3]

      Na Li Limin Shao . Deduction of the General Formula of the Inverse Function of the Titration Curve. University Chemistry, 2025, 40(3): 390-401. doi: 10.12461/PKU.DXHX202409134

    4. [4]

      Shuying Zhu Shuting Wu Ou Zheng . Improvement and Expansion of the Experiment for Determining the Rate Constant of the Saponification Reaction of Ethyl Acetate. University Chemistry, 2024, 39(4): 107-113. doi: 10.3866/PKU.DXHX202310117

    5. [5]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    6. [6]

      Ying Xiong Guangao Yu Lin Wu Qingwen Liu Houjin Li Shuanglian Cai Zhanxiang Liu Xingwen Sun Yuan Zheng Jie Han Xin Du Chengshan Yuan Qihan Zhang Jianrong Zhang Shuyong Zhang . Basic Operations and Specification Suggestions for Determination of Physical Constants of Organic Compounds. University Chemistry, 2025, 40(5): 106-121. doi: 10.12461/PKU.DXHX202503079

    7. [7]

      Yu Dai Xueting Sun Haoyu Wu Naizhu Li Guoe Cheng Xiaojin Zhang Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052

    8. [8]

      Yichang Liu Li An Dan Qu Zaicheng Sun . “双碳”背景下的综合设计实验——以PbCrO4催化甲基蓝的光降解速率常数测定为例. University Chemistry, 2025, 40(6): 222-229. doi: 10.12461/PKU.DXHX202407105

    9. [9]

      Ruilin Han Xiaoqi Yan . Comparison of Multiple Function Methods for Fitting Surface Tension and Concentration Curves. University Chemistry, 2024, 39(7): 381-385. doi: 10.3866/PKU.DXHX202311023

    10. [10]

      Haiying Jiang Huilin Guo Yongliang Cheng Tongyu Xu Jiquan Liu Mingli Peng . Teaching Design of the Nernst Equation Based on the “Flipped Classroom” Method. University Chemistry, 2024, 39(8): 84-90. doi: 10.3866/PKU.DXHX202312091

    11. [11]

      Xiyuan Su Zhenlin Hu Ye Fan Xianyuan Liu Xianyong Lu . Change as You Want: Multi-Responsive Superhydrophobic Intelligent Actuation Material. University Chemistry, 2024, 39(5): 228-237. doi: 10.3866/PKU.DXHX202311059

    12. [12]

      Zhongrui Wang Yuwen Meng Xu Wang . 双层水凝胶的制备及其pH响应变形实验. University Chemistry, 2025, 40(8): 255-264. doi: 10.12461/PKU.DXHX202410038

    13. [13]

      Xintian Xie Sicong Ma Yefei Li Cheng Shang Zhipan Liu . Application of Machine Learning Potential-based Theoretical Simulations in Undergraduate Teaching Laboratory Course Design. University Chemistry, 2025, 40(3): 140-147. doi: 10.12461/PKU.DXHX202405164

    14. [14]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    15. [15]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    16. [16]

      Xinzhe HUANGLihui XUYue YANGLiming WANGZhangyong LIUZhongjian WANG . Preparation and visible light responsive photocatalytic properties of BiSbO4/BiOBr. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 284-292. doi: 10.11862/CJIC.20240212

    17. [17]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

    18. [18]

      Xiaojing TianZhichun HuangQingsong ZhangXu WangNing YangNanping Deng . PNIPAm Thermo-Responsive Nanofibers Mats: Morphological Stability and Response Behavior under Cross-Linking. Acta Physico-Chimica Sinica, 2024, 40(4): 2304037-0. doi: 10.3866/PKU.WHXB202304037

    19. [19]

      Ruming Yuan Pingping Wu Laiying Zhang Xiaoming Xu Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057

    20. [20]

      Siming Bian Sijie Luo Junjie Ou . Application of van Deemter Equation in Instrumental Analysis Teaching: A New Type of Core-Shell Stationary Phase. University Chemistry, 2025, 40(3): 381-386. doi: 10.12461/PKU.DXHX202406087

Metrics
  • PDF Downloads(0)
  • Abstract views(583)
  • HTML views(102)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return