Citation: Yu Chanchan, Yao Li. Advances in Biological Single-Molecule Force Spectroscopy[J]. Chemistry, ;2016, 79(4): 292-298. shu

Advances in Biological Single-Molecule Force Spectroscopy

  • Received Date: 22 October 2015
    Available Online: 4 December 2015

  • In recent years, single-molecule force spectroscopy has been developed rapidly and applied in various fields. The investigation of biological structure, mechanical property, and molecular dynamics by single-molecule force spectroscopy can reveal the mechanism of intermolecular interaction at the single-molecule level. It will greatly help us understand the molecular recognition, biochemical process and the relationship between molecular structure and functions. This paper introduces three kinds of the most common single-molecule force spectroscopy: atomic force microscopy (AFM), optical tweezers (OT), and magnetic tweezers (MT) at first. Then the basic principle, development, and applications of other three kinds of massively parallel force spectroscopy: acoustic force spectroscopy (AFS), centrifugal force microscope (CFM), and force-induced remnant magnetization spectroscopy (FIRMS) are introduced briefly.
  • 加载中
    1. [1]

      [1] N D Souza. Nat. Methods., 2012, 9:873~877.

    2. [2]

      [2] K C Neuman, A Nagy. Nat. Methods, 2008, 5:491~505.

    3. [3]

      [3] T Ha, A G Kozlov, T M Lohman. Ann. Rev. Biophys., 2012, 41:295~319.

    4. [4]

      [4] W Zhao, M Cai, H Xu et al. Nanoscale, 2013, 5:3226~3229.

    5. [5]

      [5] D H Kim, J E Lee, Z Y Xu et al. Nat. Commun., 2015, 6:6843.

    6. [6]

      [6] B Wang, C Guo, G Chen et al. Chem. Commun., 2012, 48:1644~1646.

    7. [7]

      [7] N Gavara, R S Chadwick. Nat. Nanotechnol., 2012, 7:733~736.

    8. [8]

      [8] G Longo, L A Sarduy, L M Rio et al. Nat. Nanotechnol., 2013, 8:522~526.

    9. [9]

      [9] A E Beedle, A Lezamiz, G Stirnemann et al. Nat. Commun., 2015, 6:7894.

    10. [10]

      [10] C Lv, X Gao, W Li et al. Nat. Commun., 2014, 5:623.

    11. [11]

      [11] Y Kim, E S Kim, Y Lee et al. J. Am. Chem. Soc., 2014, 136:13754~13760.

    12. [12]

      [12] S Ramachandran, F T Arce, N R Patel et al. Sci. Rep. UK, 2014, 4:4424.

    13. [13]

      [13] D B Phillips, M J Padgett, S Hanna et al. Nat. Photonics, 2014, 8:400~405.

    14. [14]

      [14] O M Marago, P H Jones, P G Gucciardi et al. Nat. Nanotechnol., 2013, 8:807~819.

    15. [15]

      [15] S M Schreiner, P K Koo, Y Zhao et al. Nat. Commun., 2015, 6:7159.

    16. [16]

      [16] K Visscher, M J Schnitzer, S M Block. Nature, 1999, 400:184~189.

    17. [17]

      [17] C L Asbury, A N Fehr, S M Block. Science, 2003, 302:2130~2134.

    18. [18]

      [18] A D Migliori, N Keller, T I Alam et al. Nat. Commun., 2014, 5:5173.

    19. [19]

      [19] J W Shaevitz, E A Abbondanzieri, R Landick et al. Nature, 2003, 426:684~687.

    20. [20]

      [20] E A Abbondanzieri, W J Greenleaf, J W haevitz et al. Nature, 2005, 438:460~465.

    21. [21]

      [21] M C Zhong, X B Wei, J H Zhou et al. Nat. Commun., 2013, 4:1768.

    22. [22]

      [22] A S Biebricher, I Heller, R F Roijmans et al. Nat. Commun., 2015, 6:7304.

    23. [23]

      [23] D Koirala, S Dhakal, B Ashbridge et al. Nat. Chem., 2011, 3:782~787.

    24. [24]

      [24] P O Heidarsson, I Valpapuram, C Camilloni et al. J. Am. Chem. Soc., 2012, 134:17068~17075.

    25. [25]

      [25] S Lee, S Hohng. J. Am. Chem. Soc., 2013, 135:18260~18263.

    26. [26]

      [26] W Stephenson, P N Asareokai, A A Chen et al. J. Am. Chem. Soc., 2013, 135:5602~5611.

    27. [27]

      [27] F Ding, M Manosas, M M Spiering et al. Nat. Methods, 2012, 9:367~372.

    28. [28]

      [28] E H Galan, M E Fuentes-Perez, C Carrasco et al. J. Am. Chem.Soc., 2013, 135:122~131.

    29. [29]

      [29] H Chen, G Yuan, R S Winardhi et al. J. Am. Chem. Soc., 2015, 137:3540~3546.

    30. [30]

      [30] C Danilowicz, D Greenfield, M Prentiss. Anal. Chem., 2005, 77:3023~3028.

    31. [31]

      [31] D A Koster, V Croquette, C Dekker et al. Nature, 2005, 434:671~674.

    32. [32]

      [32] B Maier, D Bensimon, V Croquette. PNAS, 2000, 97:12002~12007.

    33. [33]

      [33] A R Revyakin, C Y Liu, R H Ebright et al. Science, 2006, 314:1139~1143.

    34. [34]

      [34] F Fiorini, D Bagchi, H L Hir et al. Nat. Commun., 2015, 6:7581.

    35. [35]

      [35] W Li, X M Hou, P Y Wang et al. J. Am.Chem. Soc., 2013, 135:6423~6426.

    36. [36]

      [36] H You, J Wu, F Shao et al. J. Am. Chem. Soc., 2015, 137:2424~2427.

    37. [37]

      [37] W Bae, K Kim, D Min et al. Nat. Commun., 2014, 5:5654.

    38. [38]

      [38] S Selvam, D Koirala, Z Yu et al. J. Am. Chem. Soc., 2014, 136:13967~13970.

    39. [39]

      [39] L D Vlaminck, T Henighan, T J Marijn. Nano Lett., 2011,11(12):5489~5493.

    40. [40]

      [40] G Sitters, D Kamsma, G Thalhammer et al. Nat. Methods, 2015, 12:47~50.

    41. [41]

      [41] K Halvorsen, W P Wong. Biophys. J., 2010, 98:L53~55.

    42. [42]

      [42] L Yao, S J Xu. Angew. Chem. Int. Ed., 2011, 50(19):4407~4409.

    43. [43]

      [43] S Xu, S M Rochester, V V Yashchuk et al. Rev. Sci. Instrum., 2006, 77:083106.

    44. [44]

      [44] L Yao, S J Xu. Angew. Chem. Int. Ed., 2009, 48:5679~5682.

    45. [45]

      [45] L Yao, A C Jamison, S J Xu. Angew. Chem. Int. Ed., 2010, 49:7493~7496.

    46. [46]

      [46] L Yao, S J Xu. J. Phys. Chem. B, 2012, 116(33):9944~9948.

    47. [47]

      [47] L Yao, S J Xu. Angew. Chem. Int. Ed., 2013, 52(52):14041~14044.

    48. [48]

      [48] L D Silva, L Yao, Y Hwang et al. J. Phys. Chem. B, 2013, 117(25):7554~7558.

  • 加载中
    1. [1]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    2. [2]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    3. [3]

      Yuxin CHENYanni LINGYuqing YAOKeyi WANGLinna LIXin ZHANGQin WANGHongdao LIWenmin WANG . Construction, structures, and interaction with DNA of two Sm4 complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1141-1150. doi: 10.11862/CJIC.20240258

    4. [4]

      Huiying Xu Minghui Liang Zhi Zhou Hui Gao Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011

    5. [5]

      Jiamin Zhang Zhen Fan Jianzhong Du . Integrated Teaching Method Combining Domestic and International Perspectives: A Case Study on Cultivating Innovative Talents in Polymeric Biomaterials. University Chemistry, 2025, 40(7): 156-160. doi: 10.12461/PKU.DXHX202409131

    6. [6]

      Hailian TangSiyuan ChenQiaoyun LiuGuoyi BaiBotao QiaoLiu Fei . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 2408004-0. doi: 10.3866/PKU.WHXB202408004

    7. [7]

      Jingwen Wang Minghao Wu Xing Zuo Yaofeng Yuan Yahao Wang Xiaoshun Zhou Jianfeng Yan . Advances in the Application of Electrochemical Regulation in Investigating the Electron Transport Properties of Single-Molecule Junctions. University Chemistry, 2025, 40(3): 291-301. doi: 10.12461/PKU.DXHX202406023

    8. [8]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    9. [9]

      Cen Zhou Biqiong Hong Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086

    10. [10]

      Shuang Meng Haixin Long Zhou Zhou Meizhu Rong . Inorganic Chemistry Curriculum Design and Implementation of Based on “Stepped-Task Driven + Multi-Dimensional Output” Model: A Case Study on Intermolecular Forces. University Chemistry, 2024, 39(3): 122-131. doi: 10.3866/PKU.DXHX202309008

    11. [11]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    12. [12]

      Wen-Bing Hu . Systematic Introduction of Polymer Chain Structures. University Chemistry, 2025, 40(4): 15-19. doi: 10.3866/PKU.DXHX202401014

    13. [13]

      Zehua ZhangHaitao YuYanyu Qi . Design Strategy for Thermally Activated Delayed Fluorescence Materials with Multiple Resonance Effect. Acta Physico-Chimica Sinica, 2025, 41(1): 100006-0. doi: 10.3866/PKU.WHXB202309042

    14. [14]

      Yuxia Luo Xiaoyu Xie Fangfang Chen . 药物递送魔法师——分子印迹聚合物. University Chemistry, 2025, 40(8): 202-210. doi: 10.12461/PKU.DXHX202409129

    15. [15]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102

    16. [16]

      Yuhui Yang Jintian Luo Biao Zuo . A Teaching Approach to Polymer Surface and Interface in Undergraduate Polymer Physics Courses. University Chemistry, 2025, 40(4): 126-130. doi: 10.12461/PKU.DXHX202408056

    17. [17]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    18. [18]

      Pingping Zhu Qiang Zhou Yu Huang Haiyang Yang Pingsheng He Shiyan Xiao . Design and Practice of Ideological and Political Cases in the Course of Polymer Physics Experiments: Molecular Weight Determination of Polymers by Dilute Solution Viscosity Method as an Example. University Chemistry, 2025, 40(4): 94-99. doi: 10.12461/PKU.DXHX202405170

    19. [19]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    20. [20]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

Metrics
  • PDF Downloads(2)
  • Abstract views(882)
  • HTML views(70)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return