Citation: Zhang Yang, Yu Xi, Zhang Xueji, Zhang Meiqin. Visualization of Latent Fingermarks by Electrochemical Co-deposition of ZnO-CuO Composite Films[J]. Chemistry, ;2016, 79(8): 739-743. shu

Visualization of Latent Fingermarks by Electrochemical Co-deposition of ZnO-CuO Composite Films

  • Corresponding author: Zhang Meiqin, 
  • Received Date: 21 March 2015
    Available Online: 6 April 2015

    Fund Project:

  • A novel method for developing latent fingermarks (LFMs) on various conductive substrates (stainless steel plate, aluminum sheet, zinc sheet, copper sheet, 1 Yuan coin and 5 Jiao coin) through the electrochemical co-deposition of zinc oxide-copper oxide (ZnO-CuO) composite films has been developed here. The principle of visualizing LFMs is that the electrochemical co-deposition process selectively occurs on the valley regions and bare conductive surfaces owing to electrochemical inert property of the residues left at the ridges areas, so a color difference between the ridge and valley areas is generated resulting in a high visual contrast of the LFMs. The FE-SEM images and elemental analysis results confirmed that the ZnO-CuO composite films were electrochemically deposited on the valley regions of the LFMs rather than the ridge regions. Moreover, the visualization images of the LFMs originated from the deposition of ZnO-CuO composite films could provide the clear second level details and partial third level details of the LFMs. This method is simple, high efficient and widely applicable in the visualization of the LFMs and would be a promising tool in the practical application.
  • 加载中
    1. [1]

      [1] P Hazarika, D A Russell. Angew. Chem. Int. Ed., 2012, 51(15): 3524~3531.

    2. [2]

      [2] F Henry. Nature, 1880, 22: 605.

    3. [3]

      [3] M Zhang, H H Girault. Electrochem. Commun., 2007, 9(7): 1778~1782.

    4. [4]

      [4] C Fairley, S M Bleay, V G Sears et al. Forensic. Sci. Int., 2012, 217(1-3): 5~18.

    5. [5]

      [5] A Becue, C Champod, P Margot. Forensic. Sci. Int., 2007, 168(2-3): 169~176.

    6. [6]

      [6] M Zhang, A Becue, M Prudent et al. Chem. Commun., 2007, (38): 3948~3950.

    7. [7]

      [7] Y He, L Xu, Y Zhu et al. Angew. Chem. Int. Ed., 2014, 53(46): 12609~12612.

    8. [8]

      [8] A S Ramos, M T Vieira. Forensic. Sci. Int., 2012, 217(1-3): 196~203.

    9. [9]

      [9] I H Yu, S Jou, C M Chen et al. Forensic. Sci. Int., 2011, 207(1-3): 14~18.

    10. [10]

      [10] N Jones, M Stoilovic, C Lennard et al. Forensic. Sci. Int., 2001, 115(1-2): 73~88.

    11. [11]

      [11] M Zhang, G Qin, Y Zuo et al. Electrochim. Acta, 2012, 78412~416.

    12. [12]

      [12] G S Sodhi, J Kaur. Forensic. Sci. Int., 2001, 120(3): 172~176.

    13. [13]

      [13] R Ma, R Shimmon, A McDonagh et al. Forensic. Sci. Int., 2012, 217(1-3): e23~e26.

    14. [14]

      [14] S Chadwick, P Maynard, P Kirkbride et al. Forensic. Sci. Int., 2012, 219(1-3): 208~214.

    15. [15]

      [15] S J Fieldhouse. J. Forensic. Sci., 2011, 56(6): 1514~1520.

    16. [16]

      [16] C Nixon, M J Almond, J V Baum et al. J. Forensic. Sci., 2013, 58(2): 508~512.

    17. [17]

      [17] L Xu, Y Li, S Wu et al. Angew. Chem., 2012, 124(32): 8192~8196.

    18. [18]

      [18] L Xu, C Zhang, Y He et al. Sci. China Chem., 2015, 58(7): 1090~1096.

    19. [19]

      [19] T Pauporte, D Lincot. Electrochim. Acta, 2000, 45(20): 3345~3353.

    20. [20]

      [20] G Qin, M Zhang, Y Zhang et al. J. Electroanal. Chem., 2013, 693122~126.

    21. [21]

      [21] G Qin, M-Q Zhang, Y Zhang et al. Chin. Chem. Lett., 2013, 24(2): 173~176.

    22. [22]

      [22] M Zhang, Y Zhu, X Yu et al. Electroanal., 2014, 26(1): 209~215.

    23. [23]

      [23] M Zhang, X Yu, G Qin et al. Sci. China Chem., 2015, 58(7): 1200~1205.

    24. [24]

      [24] R M Brown, A R Hillman. Phys. Chem. Chem. Phys., 2012, 14(24): 8653~8661.

    25. [25]

      [25] A L Beresford, R M Brown, A R Hillman et al. J. Forensic. Sci., 2012, 57(1): 93~102.

    26. [26]

      [26] A L Beresford, A R Hillman. Anal. Chem., 2010, 82(2): 483~486.

    27. [27]

      [27] S Wei, Y Chen, Y Ma et al. J. Mol. Catal. A, 2010, 331(1-2): 112~116.

    28. [28]

      [28] Z L Liu, J C Deng, J J Deng et al. Mater. Sci. Eng. B, 2008, 150(2): 99~104.

  • 加载中
    1. [1]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    2. [2]

      Huirong BAOJun YANGXiaomiao FENG . Preparation and electrochemical properties of NiCoP/polypyrrole/carbon cloth by electrodeposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1083-1093. doi: 10.11862/CJIC.20250008

    3. [3]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    4. [4]

      Zhaoyu WenNa HanYanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001

    5. [5]

      Xuechen HuQiuying XiaFan YueXinyi HeZhenghao MeiJinshi WangHui XiaXiaodong Huang . Electrochemical Characteristics of LiNbO3 Anode Film and Its Applications in All-Solid-State Thin-Film Lithium-Ion Battery. Acta Physico-Chimica Sinica, 2024, 40(2): 2309046-0. doi: 10.3866/PKU.WHXB202309046

    6. [6]

      Xiaofeng ZhuBingbing XiaoJiaxin SuShuai WangQingran ZhangJun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005

    7. [7]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    8. [8]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    9. [9]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    10. [10]

      Qianwen HanTenglong ZhuQiuqiu LüMahong YuQin Zhong . Performance and Electrochemical Asymmetry Optimization of Hydrogen Electrode Supported Reversible Solid Oxide Cell. Acta Physico-Chimica Sinica, 2025, 41(1): 100005-0. doi: 10.3866/PKU.WHXB202309037

    11. [11]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    12. [12]

      Xiaofei LiuHe WangLi TaoWeimin RenXiaobing LuWenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008

    13. [13]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    14. [14]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    15. [15]

      Yu Wang Shoulei Zhang Tianming Lv Yan Su Xianyu Liu Fuping Tian Changgong Meng . Introduce a Comprehensive Inorganic Synthesis Experiment: Synthesis of Nano Zinc Oxide via Microemulsion Using Waste Soybean Oil. University Chemistry, 2024, 39(7): 316-321. doi: 10.3866/PKU.DXHX202311035

    16. [16]

      Hong Yan Wenfeng Wang Keyin Ye Yaofeng Yuan . Organic Electrochemistry and Its Integration into Chemistry Teaching. University Chemistry, 2025, 40(5): 301-310. doi: 10.12461/PKU.DXHX202407027

    17. [17]

      Shuhui Li Xucen Wang Yingming Pan . Exploring the Role of Electrochemical Technologies in Everyday Life. University Chemistry, 2025, 40(3): 302-307. doi: 10.12461/PKU.DXHX202406059

    18. [18]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    19. [19]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    20. [20]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

Metrics
  • PDF Downloads(0)
  • Abstract views(552)
  • HTML views(94)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return