Citation: Liu Maoxiang, Zhang Shupeng, Gao Juanjuan, Qian Yueyue, Song Haiou. Review on Sensitive Electrochemical Sensors for Nitrite Determination[J]. Chemistry, ;2016, 79(9): 798-804. shu

Review on Sensitive Electrochemical Sensors for Nitrite Determination

  • Corresponding author: Zhang Shupeng,  Song Haiou, 
  • Received Date: 22 December 2015
    Available Online: 10 May 2016

    Fund Project:

  • Nitrite is a toxic and carcinogenic substance, and it is characteristic pollutant which widely exists in the natural environment and human life. As a consequence of the recognized problems, it is urgent and significant to carry out the rapid and sensitive determination for nitrite. Electrochemical approaches have gained more and more attention owing to rapid reaction rate, higher sensitivity and lower detection limit, etc. In this review, based on the electrochemical sensing materials with different matrices and active materials, we outlined a series of electrochemical sensors for nitrite in detail. We put special emphasis on the synthetic approaches and the performances of sensing devices. The comparisons with the individuality and commonness would further promote the development of practical electrochemical sensors for nitrite.
  • 加载中
    1. [1]

      [1] K Zhao, H Song, S Zhuang et al. Electrochem. Commun., 2007, 9, (1):65~70.

    2. [2]

      [2] K Nakamura, Y Yoshida, I Mikami et al. Appl. Catal. B, 2006, 65, (1~2):31~36.

    3. [3]

      [3] J Zhu, T Zhu, X Zhou et al. Nanoscale, 2011, 3(3):1084~1089.

    4. [4]

      [4] S Radhakrishnan, K Krishnamoorthy, C Sekar et al. Appl. Catal. B, 2014, 148~149:22~28.

    5. [5]

      [5] V Jedlićková, Z Paluch, S Alusik et al. J. Chromatogr. B, 2002, 780(1):193~197.

    6. [6]

      [6] P Mikuska, Z K Vecera, Z K Zdrahal. Anal. Chim. Acta, 1995, 316(2):261~268.

    7. [7]

      [7] R A Al-Okab, A A Syed. Talanta, 2007, 72(4):1239~1247.

    8. [8]

      [8] M Muchindu, T Waryo, O Arotiba et al. Electrochim. Acta, 2010, 55(14):4274~4280.

    9. [9]

      [9] T Liu, M X Li, N Q Li et al. Talanta, 2000, 50(6):1299~1305.

    10. [10]

      [10] H Wu, S Fan, X Jin et al. Anal. Chem., 2014, 86(13):6285~6290.

    11. [11]

      [11] J Jiang, W Fan, X Du. Biosens. Bioelectron., 2014, 51:343~348.

    12. [12]

      [12] S J Li, G Y Zhao, R X Zhang et al. Microchim. Acta, 2013, 180(9~10):821~827.

    13. [13]

      [13] B Yuan, C Xu, L Liu et al. Sens. Actuat. B, 2014, 198:55~61.

    14. [14]

      [14] S Jiao, J Jin, L Wang. Sens. Actuat. B, 2015, 208:36~42.

    15. [15]

      [15] X Wang, H Li, M Wu et al. Chin. J. Anal. Chem., 2013, 41(8):1232~1237.

    16. [16]

      [16] Y Zhang, Y Zhao, S Yuan et al. Sens. Actuat. B, 2013, 185:602~607.

    17. [17]

      [17] B Yang, B Duan, H Wang et al. Colloids Surf., A, 2015, 481:43~50.

    18. [18]

      [18] N I Ikhsan, P Rameshkumar, A Pandikumar et al. Talanta, 2015, 144:908~914.

    19. [19]

      [19] S S Li, Y Y Hu, A J Wang et al. Sens. Actuat. B, 2015,208:468~474.

    20. [20]

      [20] M B Gholivand, A R Jalalvand, H C Goicoechea. Mater. Sci. Eng., C, 2014, 40:109~120.

    21. [21]

      [21] M Zhang, J Liu, F Nie et al. J. Iran. Chem. Soc., 2015, 12(9):1535~1542.

    22. [22]

      [22] D Zhang, Y Fang, Z Miao et al. Electrochim. Acta, 2013, 107:656~663.

    23. [23]

      [23] G Bharath, R Madhu, S M Chen et al. J. Mater. Chem. A, 2015.

    24. [24]

      [24] H Teymourian, A Salimi, S Khezrian. Biosens. Bioelectron., 2013, 49(45):1~8.

    25. [25]

      [25] F Xu, M Deng, Y Liu et al. Electrochem. Commun., 2014, 47:33~36.

    26. [26]

      [26] L Cui, T Pu, Y Liu et al. Electrochim. Acta, 2013, 88:559~564.

    27. [27]

      [27] 郑冬云, 张倩倩, 刘晓军等. 传感器与微系统, 2015, 33(12):60~63.

    28. [28]

      [28] M Liu, L Wang, Y Meng et al. Electrochim. Acta, 2014, 116:504~511.

    29. [29]

      [29] 黄娜, 刘美玲, 邓建辉等. 分析化学, 2015, (3):325~332.

    30. [30]

      [30] A Afkhami, F Soltani-Felehgari, T Madrakian et al. Biosens. Bioelectron., 2014, 51:379~385.

    31. [31]

      [31] A J Lin, Y Wen, L J Zhang et al. Electrochim. Acta, 2011, 56(3):1030~1036.

    32. [32]

      [32] X H Pham, C A Li, K N Han et al. Sens. Actuat. B, 2014, 193:815~822.

    33. [33]

      [33] V Mani, T Y Wu, S M Chen. J. Solid State Electrochem, 2014, 18(4):1015~1023.

    34. [34]

      [34] J Qu, Y Dong, Y Wang et al. Sens. Bio-Sens. Res., 2015,3:74~78.

    35. [35]

      [35] Z Meng, B Liu, J Zheng et al. Microchim. Acta., 2011, 175(3~4):251~257.

    36. [36]

      [36] D Gligor, A Walcarius. J. Solid State Electrochem., 2014, 18(6):1519~1528.

    37. [37]

      [37] F Kuralay, M Dumangoz, S Tunc. Talanta, 2015, 144:1133~1138.

    38. [38]

      [38] C Deng, J Chen, Z Nie et al. Thin Solid Films, 2012, 520, (23):7026~7029.

    39. [39]

      [39] K Rajalakshmi, S A John. Sens. Actuat. B, 2015, 215:119~124.

    40. [40]

      [40] W Liu, Y Gu, G Sun et al. Electroanalysis, 2015, 28(3):484~492.

    41. [41]

      [41] G L Turdean, G Szabo. Food Chem., 2015, 179:325~330.

    42. [42]

      [42] Z Di, H Ma, Y Chen et al. Anal. Chim. Acta, 2013, 792(16):35~44.

    43. [43]

      [43] L Zhou, J P Wang, L Gai et al. Sens. Actuat. B, 2013, 181:65~70.

    44. [44]

      [44] Y J Yang, W Li. Biosens. Bioelectron., 2014, 56:300~306.

    45. [45]

      [45] S Palanisamy, C Karuppiah, S M Chen et al. J. Electroanal. Chem., 2014, 6(8):34~38.

    46. [46]

      [46] J H Yang, H Yang, S Liu et al. Sens. Actuat. B, 2015, 220:652~658.

    47. [47]

      [47] H Liu, C Duan, C Yang et al. Sens. Actuat. B, 2015,218:60~66.

    48. [48]

      [48] S Saadati, A Salimi, R Hallaj et al. Sens. Actuat. B, 2014, 191:625~633.

    49. [49]

      [49] D Micić, B Šljukić, Z Zujovic et al. Electrochim. Acta, 2014, 120(7):147~158.

    50. [50]

      [50] D Ning, H Zhang, J Zheng. J. Electroanal. Chem., 2014, 717:29~33.

    51. [51]

      [51] B Pan, J Ma, X Zhang et al. J. Mater. Sci., 2015, 50(19):6469~6476.

    52. [52]

      [52] P Rameshkumar, R Ramaraj, P Rameshkumar et al. J. Electroanal. Chem., 2014, 731:72~77.

    53. [53]

      [53] B Yuan, J Zhang, R Zhang et al. Sens. Actuat. B, 2016, 222:632~637.

  • 加载中
    1. [1]

      Qin Hou Jiayi Hou Aiju Shi Xingliang Xu Yuanhong Zhang Yijing Li Juying Hou Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056

    2. [2]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    3. [3]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    4. [4]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    5. [5]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    6. [6]

      Shuhui Li Xucen Wang Yingming Pan . Exploring the Role of Electrochemical Technologies in Everyday Life. University Chemistry, 2025, 40(3): 302-307. doi: 10.12461/PKU.DXHX202406059

    7. [7]

      Shuhui Li Jing Wang Haitao Tang Yingming Pan . A Taste Journey with Sauerkraut. University Chemistry, 2024, 39(9): 59-63. doi: 10.12461/PKU.DXHX202404061

    8. [8]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    9. [9]

      Yang MeiqingLu WangHaozi LuYaocheng YangSong Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 2310046-0. doi: 10.3866/PKU.WHXB202310046

    10. [10]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    11. [11]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    12. [12]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    13. [13]

      Xue XiaoJiachun LiXiangtong MengJieshan Qiu . Sulfur-Doped Carbon-Coated Fe0.95S1.05 Nanospheres as Anodes for High-Performance Sodium Storage. Acta Physico-Chimica Sinica, 2024, 40(6): 2307006-0. doi: 10.3866/PKU.WHXB202307006

    14. [14]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    15. [15]

      Wei SunYongjing WangKun XiangSaishuai BaiHaitao WangJing ZouArramelJizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015

    16. [16]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    17. [17]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    18. [18]

      Chaolin MiYuying QinXinli HuangYijie LuoZhiwei ZhangChengxiang WangYuanchang ShiLongwei YinRutao Wang . Galvanic Replacement Synthesis of Graphene Coupled Amorphous Antimony Nanoparticles for High-Performance Sodium-Ion Capacitor. Acta Physico-Chimica Sinica, 2024, 40(5): 2306011-0. doi: 10.3866/PKU.WHXB202306011

    19. [19]

      Yihan XueXue HanJie ZhangXiaoru Wen . NCQDs修饰FeOOH基复合材料的制备及其电容脱盐性能. Acta Physico-Chimica Sinica, 2025, 41(7): 100072-0. doi: 10.1016/j.actphy.2025.100072

    20. [20]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

Metrics
  • PDF Downloads(1)
  • Abstract views(823)
  • HTML views(112)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return