Citation: ZHANG Xue-Mei, OU Zhi-Bin, CHEN Shi, XIONG Ya-Hong, ZHOU Xiao-Hua, LIU Hai-Feng, LE Xue-Yi. Synthesis, Crystal Structure and DNA-Binding Properties of Copper(Ⅱ) Complex with 6-(Pyrazin-2′-yl)-1,3,5-triazine-2,4-diamine and Glycinate[J]. Chinese Journal of Inorganic Chemistry, ;2012, 28(12): 2667-2673. shu

Synthesis, Crystal Structure and DNA-Binding Properties of Copper(Ⅱ) Complex with 6-(Pyrazin-2′-yl)-1,3,5-triazine-2,4-diamine and Glycinate

  • Corresponding author: LE Xue-Yi, 
  • Received Date: 11 March 2012
    Available Online: 8 July 2012

    Fund Project: 广东省自然科学基金(No.10151064201000016) (No.10151064201000016)华南农业大学211工程重点项目(No.2009B010100001)资助项目. (No.2009B010100001)

  • The copper(Ⅱ) complex [Cu(H2O)(Gly)(PZTA)]ClO4 (Gly=glycinate) was prepared by the reaction of 6-(pyrazin-2′-yl)-1,3,5-triazine-2,4-diamine (PZTA) and glycine (Gly) with copper(Ⅱ) perchlorate, and characterized by elemental analysis, infrared radiation, UV-Vis, and molar conductance. Its crystal structure was determined by single crystal X-ray diffraction method. The complex crystallizes in the monoclinic system, space group C2/c, with cell parameters: a=2.189 6(3) nm, b=1.308 3(2) nm, c=1.465 4(4) nm, β=131.467(3)°, cell volume: V=3.145 6(9) nm3, number of molecules inside the cell: Z=8, final R indices (I>2σ(I)): R1=0.037 4, wR2=0.100 9. The interaction of the complex to DNA was studied by UV spectroscopy, EtBr fluoescent probe and viscosity measurement. The results indicate that the complex could interact with DNA by partial intercalative mode. CCDC: 848150.
  • 加载中
    1. [1]

      [1] Garoufis A, Hadjikakou S K, Hadjiliadis N. Coord. Chem. Rev., 2009,253(9-10):1384-1397

    2. [2]

      [2] Patra A K, Roy S, Chakravarty A R. Inorg. Chim. Acta, 2009,362(13):4692-4698

    3. [3]

      [3] Grueso E, López-Pérez G, Castellano M, et al. J. Inorg. Biochem., 2012,106(1):1-9

    4. [4]

      [4] Bencini A, Lippolis V. Coord. Chem. Rev., 2010,254(17-18): 2096-2180

    5. [5]

      [5] LU Yan-Mei(卢艳梅), LE Xue-Yi(乐学义). Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2011,27(2):199-213

    6. [6]

      [6] Yoshikawa Y, Komeda S, Uemura M, et al. Inorg. Chem., 2011,50(22):11729-11735

    7. [7]

      [7] Ren X X, Chen J Y, Le X Y. Chin. J. Chem., 2011,29(7): 1380-1388

    8. [8]

      [8] Sasmal P K, Patra A K, Nesaji M, et al. Inorg. Chem., 2007, 46(26):11112-11121

    9. [9]

      [9] HONG Xian-Lan(洪显兰), REN Jian-Min(任健敏). Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2011,27(4):785-790

    10. [10]

      [10] BIAN Lin(边琳), LI Lian-Zhi(李连之), WANG Xia(王霞), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2011, 27(4):649-654

    11. [11]

      [11] Reddy P R, Shilpa A, Raju N, et al. J. Inorg. Biochem., 2011,105(12):1603-1612

    12. [12]

      [12] Bencini A, Lippolis V. Coord. Chem. Rev., 2010,254(17-18):2096-2180

    13. [13]

      [13] The Chemical Society of Japanese, Translated by AN Jia-Ju (安家驹), Chen Zhi-Chuan(陈之川). Handbook of Inorganic Compounds Ⅱ(无机化合物手册,第2册). Beijing: Chemnistry Industry Press, 1986:513

    14. [14]

      [14] Case F H. J. Heterocycl. Chem., 1968,5(2):223-226

    15. [15]

      [15] Marmur J. J. Mol. Biol., 1961,3(1):208-218

    16. [16]

      [16] Reichmann M E, Rice S A, Thomas C A, et al. J. Am. Chem. Soc., 1954,76(11):3047-3053

    17. [17]

      [17] Blessing R. Acta Crystallog., 1995,A51:33

    18. [18]

      [18] Sheldrick G M. SHELXL-97, Program for X-ray Crystal Structure Determination, Göttingen University, Germany, 1997.

    19. [19]

      [19] Geary W J. Coord. Chem. Rev., 1971,7(1):81-122

    20. [20]

      [20] LI Xiu-Mei(李秀梅), NIU Yang-Ling(牛艳玲), WANG Zhi-Tao(王志涛). Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2011,27(9):1837-1841

    21. [21]

      [21] Subramanian P S, Suresh E, Dastidar P, et al. Inorg. Chem., 2001,40(17):4291-4301

    22. [22]

      [22] Gu Q, Le X Y, Lin Q B, et al. J. Chin. Chem., 2007,25(6): 791-796

    23. [23]

      [23] Le X Y, Gu Q, Song Z J, et al. J. Coord. Chem., 2007,60 (13):1359-1371

    24. [24]

      [24] Zhang S C, Chun X G, Chen Y. J. Chin. Chem., 2011,29(1): 65-71

    25. [25]

      [25] Wolf A, Jr Shimer G H, Meehan T. Biochemistry, 1987,26 (20):6392-6396

    26. [26]

      [26] Chen J Y, Ren X X, Le X Y, et al. Chin. J. Chem., 2010,28 (11):2179-2187

    27. [27]

      [27] Indumathy R, Radhika S, Kanthimathi M, et al. J. Inorg. Biochem., 2007,101(3):434-443

    28. [28]

      [28] Lakowicz J R, Webber G. Biochemistry, 1973,12(21):4161-4170

    29. [29]

      [29] Satyanarayana S, Dabrowiak J C, Chaires J B. Biochemistry, 1992,31(39):9319-9324

    30. [30]

      [30] Liu F, Meadows K A, McMillin D R. J. Am. Chem. Soc., 1993,115(15):6699-6704

  • 加载中
    1. [1]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    2. [2]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    3. [3]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    4. [4]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    5. [5]

      Hongjie SHENHaozhe MIAOYuhe YANGYinghua LIDeguang HUANGXiaofeng ZHANG . Synthesis, crystal structure, and fluorescence properties of two Cu(Ⅰ) complexes based on pyridyl ligand. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 855-863. doi: 10.11862/CJIC.20250009

    6. [6]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    7. [7]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    8. [8]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    9. [9]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    10. [10]

      Hexing SONGZan SUN . Synthesis, crystal structure, Hirshfeld surface analysis, and fluorescent sensing for Fe3+ of an Mn(Ⅱ) complex based on 1-naphthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 885-892. doi: 10.11862/CJIC.20240402

    11. [11]

      Yuxin CHENYanni LINGYuqing YAOKeyi WANGLinna LIXin ZHANGQin WANGHongdao LIWenmin WANG . Construction, structures, and interaction with DNA of two Sm4 complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1141-1150. doi: 10.11862/CJIC.20240258

    12. [12]

      Linjie ZHUXufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416

    13. [13]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    14. [14]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    15. [15]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    16. [16]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

    17. [17]

      Weina Wang Fengyi Liu Wenliang Wang . “Extracting Commonality, Delving into Typicals, Deriving Individuality”: Constructing a Knowledge Graph of Crystal Structures. University Chemistry, 2024, 39(3): 36-42. doi: 10.3866/PKU.DXHX202308029

    18. [18]

      Junqiao Zhuo Xinchen Huang Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100

    19. [19]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    20. [20]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

Metrics
  • PDF Downloads(0)
  • Abstract views(784)
  • HTML views(48)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return