Citation: MAO Jun-Xian, JIANG Jiao, WANG Hua-Kai, YANG Li-Jun, WANG Yang-Nian, GENG Jiao, WANG Xi-Zhang, HU Zheng. Immobilizing Ruthenium Nanoparticles onto Nitrogen-Doped Carbon Nanotubes for Aerobic Oxidation of Benzyl Alcohol under Ambient Pressure[J]. Chinese Journal of Inorganic Chemistry, ;2012, 28(12): 2508-2512. shu

Immobilizing Ruthenium Nanoparticles onto Nitrogen-Doped Carbon Nanotubes for Aerobic Oxidation of Benzyl Alcohol under Ambient Pressure

  • Corresponding author: GENG Jiao,  WANG Xi-Zhang, 
  • Received Date: 8 May 2012
    Available Online: 1 July 2012

    Fund Project: 国家自然科学基金(No.21173114,21173115,20833002) (No.21173114,21173115,20833002) “973”项目(No.2007CB936302) (No.2007CB936302)江苏省自然科学基金(No.BK2010304)资助项目. (No.BK2010304)

  • Ruthenium nanoparticles were conveniently immobilized on nitrogen-doped carbon nanotubes (NCNTs) via microwave-assisted ethylene glycol reduction. Ru/NCNTs catalysts presented the excellent catalytic performance and cyclical stability for the aerobic oxidation of benzyl alcohol under atmospheric condition, compared with the catalysts supported on carbon nanotubes (CNTs) and activated carbon (AC). The conversion of benzyl alcohol could rearch 93% and the selectivity of benzaldehyde was higher than 99% at 90 ℃. The doped nitrogen atoms embedded in the NCNTs wall are responsible for the improved catalytic performance.
  • 加载中
    1. [1]

      [1] Tamas M, Alfons B. Chem. Rev., 2004,104:3037-3058

    2. [2]

      [2] Muzart J. Chem. Rev., 1992,92:113-140

    3. [3]

      [3] Uchiyama M, Kimura Y, Ohta A. Tetrahedron Lett., 2000,41: 10013-10017

    4. [4]

      [4] Berkowitz L M, Rylander P N. J. Am. Chem. Soc., 1959,80: 6682-668

    5. [5]

      [5] Menger F M, Lee C. Tetrahedron Lett., 1981,22:1655-1656

    6. [6]

      [6] An G, Lim M, Rhee H, et al. Synlett., 2007,1:95-98

    7. [7]

      [7] Korovchenko P, Donze C, Gallezot P, et al. Catal. Today, 2007,121:13-21

    8. [8]

      [8] Yun H N, Shigeru I, Michio M, et al. Chem. Commun., 2008,27:3181-3183

    9. [9]

      [9] Onal Y, Schimpf S, Claus P. J. Catal., 2004,223:122-133

    10. [10]

      [10] Yamaguchi Y, Mizuno N. Angew. Chem. Int. Ed., 2002,41: 4538-4542

    11. [11]

      [11] Enache D I, Edwards J K, Hutchings G J, et al. Science, 2006,311:362-365

    12. [12]

      [12] Iijima S. Nature, 1991,354:56-58

    13. [13]

      [13] Deng W P, Liu M, Tan X S, et al. J. Catal., 2010,271:22-32

    14. [14]

      [14] Rodrigues E G, Carabineiro S, Chen X, et al. J. Catal., 2012,285:83-91

    15. [15]

      [15] Xiong H F, Moyo M, Coville N J, et al. J. Catal., 2011,278:26-40

    16. [16]

      [16] Julien A, Kambiz C, Cuong P H, et al. Catal. Today, 2008, 138:62-68

    17. [17]

      [17] Yue B, Ma Y W,Hu Z, et al. J. Mater. Chem., 2008,18: 1747-1750

    18. [18]

      [18] Jiang S J, Ma Y W, Hu Z, et al. Adv. Mater., 2009,21:4953-4956

    19. [19]

      [19] Wang X Z,Xue H, Hu Z, et al. Nanotechnol., 2011,22: 395401-395407

    20. [20]

      [20] Yang Y, Hu Z, Wang X Z, et al. Nanotechnol., 2003,14: 733-737

    21. [21]

      [21] Chen H, Yang Y, Hu Z, et al. J. Phys. Chem. B, 2006,110: 16422-16427

    22. [22]

      [22] XUE Hua(薛华), YANG Li-Jun(杨立军), WANG Xi-Zhang (王喜章), et al. Chinese. J. Inorg. Chem.(Wuji Huaxue Xuebao), 2011,27(12):2459-2463

    23. [23]

      [23] Zamudio A, Elias A L, Terrones M, et al. Small, 2006,2: 346-350

    24. [24]

      [24] Lepro X, Terres E, Terrones M, et al. Chem. Phys. Lett., 2008,463:124-129

    25. [25]

      [25] Fu X, Yu H, Peng F, et al. Appl. Catal. A: General, 2007, 321:190-197

    26. [26]

      [26] GAO Wei-Jie(高伟洁), GUO Shu-Jing(郭淑静), ZHANG Hong-Bo(张洪波), et al. Chin. J. Catal. (Cuihua Xuebao) 2011,32:1418-1423

    27. [27]

      [27] Yang L J, Jiang S J, Zhao Y, et al. Angew. Chem. Int. Ed., 2011,50:7132-7135

  • 加载中
    1. [1]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    2. [2]

      Chen PuDaijie DengHenan LiLi Xu . Fe0.64Ni0.36@Fe3NiN Core-Shell Nanostructure Encapsulated in N-Doped Carbon Nanotubes for Rechargeable Zinc-Air Batteries with Ultralong Cycle Stability. Acta Physico-Chimica Sinica, 2024, 40(2): 2304021-0. doi: 10.3866/PKU.WHXB202304021

    3. [3]

      Gaopeng LiuLina LiBin WangNingjie ShanJintao DongMengxia JiWenshuai ZhuPaul K. ChuJiexiang XiaHuaming Li . Construction of Bi Nanoparticles Loaded BiOCl Nanosheets Ohmic Junction for Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(7): 2306041-0. doi: 10.3866/PKU.WHXB202306041

    4. [4]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    5. [5]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    6. [6]

      Jie WEIQing ZHOUDandan DINGXiang JINGFei LI . Photothermal toxicity of Prussian blue nanoparticles to cervical cancer cells. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2345-2357. doi: 10.11862/CJIC.20240435

    7. [7]

      Shuhong XiangLv YangYingsheng XuGuoxin CaoHongjian Zhou . Selective electrosorption of Cs(Ⅰ) from high-salinity radioactive wastewater using CNT-interspersed potassium zinc ferrocyanide electrodes. Acta Physico-Chimica Sinica, 2025, 41(9): 100097-0. doi: 10.1016/j.actphy.2025.100097

    8. [8]

      Zuoyong Li Haoxiang Tu Mingwei Ding Meijun Liu Ting Yang . Innovative Teaching Reform Study on the Synthesis of Silver Nanoparticles Based on Machine Learning and Microfluidic Technology. University Chemistry, 2026, 41(1): 64-75. doi: 10.12461/PKU.DXHX202505088

    9. [9]

      Lina Liu Xiaolan Wei Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112

    10. [10]

      Kezhen QiBei ChengKaiqiang Xu . Ultrafast interfacial charge transfer promoted by the LSPR of Au nanoparticles for photocatalytic H2 evolution. Acta Physico-Chimica Sinica, 2026, 42(3): 100205-0. doi: 10.1016/j.actphy.2025.100205

    11. [11]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    12. [12]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    13. [13]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    14. [14]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    15. [15]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    16. [16]

      Ruifeng CHENChao XUJianting JIANGTianshe YANG . Gold nanorod/zinc oxide/mesoporous silica nanoplatform: A triple-modal platform for synergistic anticancer therapy. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2272-2282. doi: 10.11862/CJIC.20250117

    17. [17]

      Jun HuangPengfei NieYongchao LuJiayang LiYiwen WangJianyun Liu . 丝光沸石负载自支撑氮掺杂多孔碳纳米纤维电容器及高效选择性去除硬度离子. Acta Physico-Chimica Sinica, 2025, 41(7): 100066-0. doi: 10.1016/j.actphy.2025.100066

    18. [18]

      Xinhao Yan Guoliang Hu Ruixi Chen Hongyu Liu Qizhi Yao Jiao Li Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073

    19. [19]

      Yuanyuan Ping Wangqing Kong . 光催化碳氢键官能团化合成1-苯基-1,2-乙二醇. University Chemistry, 2025, 40(6): 238-247. doi: 10.12461/PKU.DXHX202408092

    20. [20]

      Jichao XUMing HUXichang CHENChunhui WANGLeichen WANGLingyi ZHOUXing HEXiamin CHENGSu JING . Construction and hydrogen peroxide-activated chemodynamic activity of ferrocene?benzoselenadiazole conjugate. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1495-1504. doi: 10.11862/CJIC.20250144

Metrics
  • PDF Downloads(0)
  • Abstract views(778)
  • HTML views(78)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return