Citation: YANG Quan, LIU Ying-shu, LI Zi-yi, YANG Xiong, WANG Zhan-ying, JIANG Li-jun. Study on the adsorption behaviours of naphthalene on MCM-41 and SBA-15 mesoporous molecular sieves[J]. Journal of Fuel Chemistry and Technology, ;2015, 43(12): 1482-1488. shu

Study on the adsorption behaviours of naphthalene on MCM-41 and SBA-15 mesoporous molecular sieves

  • Corresponding author: YANG Xiong, 
  • Received Date: 4 June 2015
    Available Online: 1 August 2015

    Fund Project: 国家自然科学基金(51478038)资助项目 (51478038)

  • In this paper, the adsorption behaviours of naphthalene on two popular mesoporous molecular sieves, SBA-15 and MCM-41 were studied. The adsorption isotherms were obtained, and fitted with isotherm models of Langmuir, Freundlich and D-R. The breakthrough curves of naphthalene at different initial concentrations were measured, and well predicted by the constant-pattern wave model. Results show that the Langmuir model can well describe the adsorption isotherms of naphthalene at low concentration with R2 higher than 99%. The adsorption ability of SBA-15 with a microporous structure is stronger than that of MCM-41 which contains only mesoporous structures. The predictions on breakthrough curves by the constant-pattern model exhibited higher correlation coefficient for SBA-15 than for MCM-41.The overall mass transfer coefficient Ka of naphthalene on SBA-15 is higher than that on MCM-41, indicating that there is a lower mass transfer resistance and the mass transfer equilibrium can be achieved faster over SBA-15.
  • 加载中
    1. [1]

      [1] 朱利中,松下秀鹤.空气中多环芳烃的研究现状[J].环境科学进展, 1997, 5(5):18-29. (ZHU Li-zhong, MATSUSHITA H.Research actuality on polycyclic aromatic hydrocarbons in the environment air[J]. Prog Environ Sci, 1997, 5(5):18-29.)

    2. [2]

      [2] MASTRAL A M, CALLÉN M, MURILLO R. Assessment of PAH emissions as a function of coal combustion variables[J]. Fuel, 1996, 75(13):1533-1536.

    3. [3]

      [3] 尤孝方,李晓东,陆胜勇,倪明江,严建华,岑可法.垃圾与煤混烧PAHs排放特性研究[J].燃料化学学报, 2002, 30(2):130-135. (YOU Xiao-fang, LI Xiao-dong, LU Shen-yong, NI Ming-jiang, YAN Jian-hua, CENG Ke-fa. PAHs emission from Co-combustion of MSW and coal[J].J Fuel Chem Technol, 2002, 30(2):130-135.)

    4. [4]

      [4] 朱利中,王静,杜烨,许青青.汽车尾气中多环芳烃(PAHs)成分谱图研究[J].环境科学, 2003, 24(3):26-29. (ZHU Li-zhong, WANG Jin, DU Hua, XU Qing-qing. Research on PAHs fingerprints of vehicle discharges[J]. Acta Sci Circumst, 2003, 24(3):26-29.)

    5. [5]

      [5] 朱利中,沈学优,刘勇建.城市居民区空气中多环芳烃污染特征和来源分析[J].环境科学, 2001, 22(1):86-89. (ZHU Li-zhong, SHEN Xue-you, LIU Yong-jian. Research on PAHs fingerprints of vehicle discharges[J]. Acta Sci Circumst, 2001, 22(1):86-89.)

    6. [6]

      [6] ADAM G, DUNCAN H. Influence of diesel fuel on seed germination[J]. Environ Pollut, 2002, 120(2):363-370.

    7. [7]

      [7] ZHOU H C, ZHONG Z P, JIN B S, HUANG Y J, XIAO R. Experimental study on the removal of PAHs using in-duct activated carbon injection[J]. Chemosphere, 2005, 59(6):861-869.

    8. [8]

      [8] 马正月,陈皓侃,李文,李保庆.烟气中多环芳烃吸附脱除的研究[J].燃料化学学报, 2004, 32(5):526-530. (MA Zheng-yue, CHEN Hao-kan, LI Wen, LI Bao-qing. Polycyclic aromatic hydrocarbons removal from hot gas by porous sorbent adsorption[J]. J Fuel Chem Technol, 2004, 32(5):526-530.)

    9. [9]

      [9] MASTRAL A M, GARCÍA T, CALLÉN M S, NAVARRO M V, GALBÁN J. Assessement of phenanthrene removal from hot gas by porous carbons[J]. Energy Fuels, 2000, 15(1):1-7.

    10. [10]

      [10] 周宏仓,蔡华侠,薛鸿斌,宋园园,张翠翠,陆建刚.萘在炭质吸附剂上的静态吸附机理[J].环境科学研究, 2010, 23(5):658-662. (ZHOU Hong-cang, CAI Hua-xia, XUE Hong-bing, SONG Yuan-yuan, ZHANG Cui-cui, LU Jian-gang. Static adsorption mechanism of naphthalene on carbonaceous sorbents[J]. Res Environ Sci, 2010, 23(5):658-662.)

    11. [11]

      [11] MASTRAL A M, GARCÍA T, MURILLO R, CALLÉN M S, LOPEZ J M, NAVARRO M V. Effects of CO2 on the phenanthrene adsorption capacity of carbonaceous materials[J]. Energy Fuels, 2002, 16(2):510-516.

    12. [12]

      [12] ZHAO X S, MA Q, LU G Q. VOC removal:Comparison of MCM-41 with hydrophobic zeolites and activated carbon[J]. Energy Fuels, 1998, 12(6):1051-1054.

    13. [13]

      [13] 黄海凤,褚翔,卢晗锋,张波,陈银飞.两种介孔分子筛动态吸附VOCs的研究[J].中国环境科学, 2010, 30(4):442-447. (HUANG Hai-feng, CHU Xiang, LU Han-feng, ZHANG Bo, CHEN Yin-fei. Dynamic adsorption of volatile organic compounds on two kinds of mesoporous molecular sieves[J].China Environ Sci, 2010, 30(4):442-447.)

    14. [14]

      [14] KRESGE C T, ROTH W J. The discovery of mesoporous molecular sieves from the twenty year perspective[J]. Chem Soc Rev, 2013, 42(9):3663-3670.

    15. [15]

      [15] GIBSON L T. Mesosilica materials and organic pollutant adsorption:Part A removal from air[J]. Chem Soc Rev, 2014, 43(15):5163-5172.

    16. [16]

      [16] KOSUGE K, KUBO S, KIKUKAWA N, MAKOTO T. Effect of pore structure in mesoporous silicas on VOC dynamic adsorption/desorption performance[J]. Langmuir, 2007, 23(6):3095-3102.

    17. [17]

      [17] WU T M, WU G R, KAO H M, WANG J L. Using mesoporous silica MCM-41 for in-line enrichment of atmospheric volatile organic compounds[J]. J Chromatogr, 2006, 1105(1):168-175.

    18. [18]

      [18] AHMAD R, WONGFOY A G, MATZGER A J. Microporous coordination polymers as selective sorbents for liquid chromatography[J]. Langmuir, 2009, 25(20):11977-11979.

    19. [19]

      [19] MURILLO R, GARCÍA T, AYLÓN E, NAVARRO M V, LÓPEZ J M, MASTRAL A M. Adsorption of phenanthrene on activated carbons:Breakthrough curve modeling[J]. Carbon, 2004, 42(10):2009-2017.

    20. [20]

      [20] PAN B C, MENG F W, CHEN X Q, PAN B J, LI X T, ZHANG M W, ZHANG X, CHEN J L, ZHANG Q X,. Application of an effective method in predicting breakthrough curves of fixed-bed adsorption onto resin adsorbent[J]. J Hazard Mater, 2005, 124(1):74-80.

  • 加载中
    1. [1]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    2. [2]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    3. [3]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    4. [4]

      Pei Li Yuenan Zheng Zhankai Liu An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012

    5. [5]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    6. [6]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    7. [7]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    8. [8]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    9. [9]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    10. [10]

      Na Li Limin Shao . Deduction of the General Formula of the Inverse Function of the Titration Curve. University Chemistry, 2025, 40(3): 390-401. doi: 10.12461/PKU.DXHX202409134

    11. [11]

      Hexing SONGZan SUN . Synthesis, crystal structure, Hirshfeld surface analysis, and fluorescent sensing for Fe3+ of an Mn(Ⅱ) complex based on 1-naphthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 885-892. doi: 10.11862/CJIC.20240402

    12. [12]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    13. [13]

      Ruilin Han Xiaoqi Yan . Comparison of Multiple Function Methods for Fitting Surface Tension and Concentration Curves. University Chemistry, 2024, 39(7): 381-385. doi: 10.3866/PKU.DXHX202311023

    14. [14]

      Limin Shao Na Li . A Unified Equation Derived from the Charge Balance Equation for Constructing Acid-Base Titration Curve and Calculating Endpoint Error. University Chemistry, 2024, 39(11): 365-373. doi: 10.3866/PKU.DXHX202401086

    15. [15]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    16. [16]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    17. [17]

      Liangyu Gong Jie Wang Fengyu Du Lubin Xu Chuanli Ma Shihai Yan Zhuwei Song Fuheng Liu Xiuzhong Wang . Construction and Practice of “One-Point, Two-Lines and Three-Sides” Innovative Experimental Platform. University Chemistry, 2024, 39(4): 26-32. doi: 10.3866/PKU.DXHX202308023

    18. [18]

      Zian Lin Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066

    19. [19]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    20. [20]

      Zehua Zhang Haitao Yu Yanyu Qi . 多重共振TADF分子的设计策略. Acta Physico-Chimica Sinica, 2025, 41(1): 2309042-. doi: 10.3866/PKU.WHXB202309042

Metrics
  • PDF Downloads(0)
  • Abstract views(507)
  • HTML views(73)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return