Citation: ZHOU Jian-qiang, GAO Pan, DONG Chang-qing, YANG Yong-ping. TG-FTIR analysis of nitrogen conversion during straw pyrolysis:A model compound study[J]. Journal of Fuel Chemistry and Technology, ;2015, 43(12): 1427-1432. shu

TG-FTIR analysis of nitrogen conversion during straw pyrolysis:A model compound study

  • Corresponding author: DONG Chang-qing, 
  • Received Date: 21 July 2015
    Available Online: 14 October 2015

    Fund Project: 国家自然科学基金(51206045) (51206045)国家重点基础研究发展规划(973计划,2015CB251501) (973计划,2015CB251501)中央高校基金(2015MS21)资助项目 (2015MS21)

  • 2,5-diketopiperazine (DKPs) was selected as N-containing model compound to investigate fuel-N conversion pathway during straw pyrolysis. The experiments were conducted using a thermogravimetric analyzer coupled with a Fourier transform infrared spectrometer (TG-FTIR) in Ar atmosphere. The results show that NH3, HCN and HNCO are the major N-containing species during DKPs pyrolysis at 20, 40 and 60℃/min. The yield of NH3 is the largest, followed by HCN and the amount of HNCO is the lowest. With increase of heating rate, the weight loss curve moves to right and the yields of HNCO and HCN increase, while that of NH3 decreases. K, Ca and Fe have a catalytic effect on nitrogen conversion during DKPs pyrolysis. In the presence of K and Ca, the formation of NH3 and HCN is enhanced. Fe can promote the formation of NH3, but inhibit the formation HCN.
  • 加载中
    1. [1]

      [1] HANSSON K M, ÅMAND L E, HABERMANN A,WINTER F. Pyrolysis of poly-L-leucine under combustion-like conditions[J]. Fuel, 2003, 82(6):653-660.

    2. [2]

      [2] HANSSON K M. Principles of biomass pyrolysis with emphasis on the formation of the nitrogen-containing gases HNCO, HCN and NH3[D]. Goteborg:Chalmers University of Technology, 2003.

    3. [3]

      [3] CHEN H F, WANG Y, XU G W, YOSHIKAWA K. Fuel-N evolution during the pyrolysis of industrial biomass wastes with high nitrogen content[J]. Energies, 2012, 5(12):5418-5438.

    4. [4]

      [4] HANSSON K M, SAMUELSSON J, ÅMAND L E, TULLIN C. The temperature's influence on the selectivity between HNCO and HCN from pyrolysis of 2,5-diketopiperazine and 2-pyridone[J]. Fuel, 2003, 82(18):2163-2172.

    5. [5]

      [5] BECIDAN M. Experimental studies on municipal solid waste and biomass pyrolysis[D]. Trondheim:Norwegian University of Science and Technology, 2007.

    6. [6]

      [6] REN Q Q, ZHAO C S. NOx and N2O precursors (NH3 and HCN) from biomass pyrolysis:Interaction between amino acid and mineral matter[J]. Appl Energy, 2013, 112:170-174.

    7. [7]

      [7] REN Q Q, ZHAO C S, WU X, LIANG C, CHEN X P, SHEN J Z, TANG G Y, WANG Z. Effect of mineral matter on the formation of NOx precursors during biomass pyrolysis[J]. J Anal Appl Pyrolysis, 2009, 85:447-453.

    8. [8]

      [8] REN Q Q, ZHAO C S, CHEN X P, DUAN L B, LI Y J, MA C Y. NOx and N2O precursors (NH3 and HCN) from biomass pyrolysis:Co-pyrolysis of amino acids and cellulose, hemicelluloses and lignin[J]. Proc Combust Inst, 2011, 33:1715-1722.

    9. [9]

      [9] GLARBOG P, JENSEN A D, JOHNSON J E. Fuel nitrogen conversions in solid fuel fired systems[J]. Prog Energy Combust, 2003, 29(2):89-113.

    10. [10]

      [10] EIGENMANN F, MACIEJEWSKI M,BAIKER A. Quantitative calibration of spectroscopic signals in combined TG-FTIR system[J]. Thermochim Acta, 2006, 440(1):81-92.

    11. [11]

      [11] Chemicalbook[EB/OL]. http://www.chemicalbook.com/ChemicalProductProperty_CN_CB3356030.htm.

    12. [12]

      [12] 任强强,赵长遂.基于TGA-FTIR研究生物质热解过程中氮氧化物的生成[J].工程热物理学报, 2009, 30(1):173-176. (REN Qiang-qiang, ZHAO Chang-sui. Formation of nitrogenous species during biomass pyrolysis by TGA-FTIR analysis[J]. J Eng Thermophys, 2009, 30(1):173-176.)

    13. [13]

      [13] LI J, WANG Z Y, YANG X, HU L, LIU Y W, WANG C X. Evaluate the pyrolysis pathway of glycine and glycyl-glycine by TG-FTIR[J]. J Anal Appl Pyrolysis, 2007, (80):247-253.

    14. [14]

      [14] RATCLIFF M A, MEDLEY E E, SIMMONDS P G. Pyrolysis of amino acids. Mechanistic considerations[J]. J Org Chem, 1974, 39(11):1481-1490.

    15. [15]

      [15] 任强强.秸秆热利用过程中氮的迁移机理研究[D].南京:东南大学博士论文, 2011. (REN Qiang-qiang. Nitrogen transfer mechanism during thermal utilization of agricultural straw[D]. Nanjing:Southeast University, 2011.)

    16. [16]

      [16] SHARMA R K, CHAN W G, WANG J, WAY B E, WOOTEN J B, SEEMAN J I, HAJALIGOL M R. On the role of peptides in the pyrolysis of amino acids[J]. J Anal Appl Pyrolysis, 2004, 72(1):153-163.

  • 加载中
    1. [1]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    2. [2]

      Yongjian Zhang Fangling Gao Hong Yan Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035

    3. [3]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    4. [4]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

    5. [5]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    6. [6]

      Fei Liu Dong-Yang Zhao Kai Sun Ting-Ting Yu Xin Wang . Comprehensive Experimental Design for Photochemical Synthesis, Analysis, and Characterization of Seleno-Containing Medium-Sized N-Heterocycles. University Chemistry, 2024, 39(3): 369-375. doi: 10.3866/PKU.DXHX202309047

    7. [7]

      Meiyu Lin Yuxin Fang Songzhang Shen Yaqian Duan Wenyi Liang Chi Zhang Juan Su . Exploration and Implementation of a Dual-Pathway Blended Teaching Model in General Chemistry Experiment Course: A Case Study of Copper Glycine Synthesis and Its Thermal Analysis. University Chemistry, 2024, 39(8): 48-53. doi: 10.3866/PKU.DXHX202312042

    8. [8]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    9. [9]

      Qianlang Wang Jijun Sun Qian Chen Quanqin Zhao Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205

    10. [10]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

    11. [11]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    12. [12]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    13. [13]

      Xianghai Song Xiaoying Liu Zhixiang Ren Xiang Liu Mei Wang Yuanfeng Wu Weiqiang Zhou Zhi Zhu Pengwei Huo . Insights into the greatly improved catalytic performance of N-doped BiOBr for CO2 photoreduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100055-. doi: 10.1016/j.actphy.2025.100055

    14. [14]

      Ying Xiong Guangao Yu Lin Wu Qingwen Liu Houjin Li Shuanglian Cai Zhanxiang Liu Xingwen Sun Yuan Zheng Jie Han Xin Du Chengshan Yuan Qihan Zhang Jianrong Zhang Shuyong Zhang . Basic Operations and Specification Suggestions for Determination of Physical Constants of Organic Compounds. University Chemistry, 2025, 40(5): 106-121. doi: 10.12461/PKU.DXHX202503079

    15. [15]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    16. [16]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    17. [17]

      Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440

    18. [18]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    19. [19]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    20. [20]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

Metrics
  • PDF Downloads(0)
  • Abstract views(423)
  • HTML views(20)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return