钙元素对焦炭表面NO吸附行为的影响:密度泛函理论研究

刘磊 金晶 林郁郁 侯封校

引用本文: 刘磊, 金晶, 林郁郁, 侯封校. 钙元素对焦炭表面NO吸附行为的影响:密度泛函理论研究[J]. 燃料化学学报, 2015, 43(12): 1414-1419. shu
Citation:  LIU Lei, JIN Jing, LIN Yu-yu, HOU Feng-xiao. Effect of calcium on the absorption of NO on char surface:A density functional theory study[J]. Journal of Fuel Chemistry and Technology, 2015, 43(12): 1414-1419. shu

钙元素对焦炭表面NO吸附行为的影响:密度泛函理论研究

    通讯作者: 金晶,Tel:+86-21-55277768,E-mail:alicejin001@163.com
  • 基金项目:

    国家科技支撑计划(2015BAA04B03) (2015BAA04B03)

    上海市科委基础研究重点项目(14JC1404800)资助 (14JC1404800)

摘要: 采用密度泛函理论研究了Ca元素对焦炭表面NO吸附行为的影响。使用周期性石墨烯模型近似模拟实际焦炭表面的石墨化结构,并在石墨烯表面装饰Ca原子(按质量计Ca原子覆盖率为13.3%),考察了Ca元素对焦炭表面NO吸附的催化作用。计算结果表明,NO分子在纯净石墨烯表面的吸附属于物理吸附,结合能仅为-19.34 kJ/mol;石墨烯表面掺入Ca原子后,由于Ca原子4s轨道和3d轨道的电子转移到NO分子,结合能显著提高至-206.02 kJ/mol。

English

  • 
    1. [1] LUAN T, WANG X, HAO Y, CHENG L. Control of NO emission during coal reburning[J]. Appl Energy, 2009, 86(9):1783-1787.[1] LUAN T, WANG X, HAO Y, CHENG L. Control of NO emission during coal reburning[J]. Appl Energy, 2009, 86(9):1783-1787.

    2. [2] 刘彦,齐学义,丁宁,罗丹,陈方,徐江荣,周俊虎,岑可法.煤粉再燃过程中NO均相与异相还原反应相对贡献的研究[J].动力工程, 2009, 29(10):946-949+955. (LIU Yan, QI Xue-yi, DING Ning, LUO Dan, CHEN Fang, XU Jiang-rong, ZHOU Jun-huo, CEN Kefa. Study on relative contributions of homogenous and heterogeneous reaction during no reduction in pulverized coal reburning[J]. J Power Eng, 2009, 29(10):946-949+955.)[2] 刘彦,齐学义,丁宁,罗丹,陈方,徐江荣,周俊虎,岑可法.煤粉再燃过程中NO均相与异相还原反应相对贡献的研究[J].动力工程, 2009, 29(10):946-949+955. (LIU Yan, QI Xue-yi, DING Ning, LUO Dan, CHEN Fang, XU Jiang-rong, ZHOU Jun-huo, CEN Kefa. Study on relative contributions of homogenous and heterogeneous reaction during no reduction in pulverized coal reburning[J]. J Power Eng, 2009, 29(10):946-949+955.)

    3. [3] CHAMBRION P, SUZUKI T, ZHANG Z-G, KYOTANI T, TOMITA A. XPS of nitrogen-containing functional groups formed during the C-NO reaction[J]. Energy Fuels, 1997, 11(3):681-685.[3] CHAMBRION P, SUZUKI T, ZHANG Z-G, KYOTANI T, TOMITA A. XPS of nitrogen-containing functional groups formed during the C-NO reaction[J]. Energy Fuels, 1997, 11(3):681-685.

    4. [4] CHAMBRION P, KYOTANI T, TOMITA A. Role of N-containing surface species on NO reduction by carbon[J]. Energy Fuels, 1998, 12(2):416-421.[4] CHAMBRION P, KYOTANI T, TOMITA A. Role of N-containing surface species on NO reduction by carbon[J]. Energy Fuels, 1998, 12(2):416-421.

    5. [5] YAMASHITA H, TOMITA A, YAMADA H, KYOTANI T, RADOVIC LR. Influence of char surface chemistry on the reduction of nitric oxide with chars[J]. Energy Fuels, 1993, 7(1):85-89.[5] YAMASHITA H, TOMITA A, YAMADA H, KYOTANI T, RADOVIC LR. Influence of char surface chemistry on the reduction of nitric oxide with chars[J]. Energy Fuels, 1993, 7(1):85-89.

    6. [6] ILLAN-GOMEZ M J, LINARES-SOLANO A, RADOVIC L R, SALINAS-MARTINEZ D E, LECEA C. NO reduction by activated carbons 4. Catalysis by calcium[J]. Energy Fuels, 1995, 9(1):112-118.[6] ILLAN-GOMEZ M J, LINARES-SOLANO A, RADOVIC L R, SALINAS-MARTINEZ D E, LECEA C. NO reduction by activated carbons 4. Catalysis by calcium[J]. Energy Fuels, 1995, 9(1):112-118.

    7. [7] KYOTANI T, TOMITA A. Analysis of the reaction of carbon with NO/N2O using ab initio molecular orbital theory[J]. J Phys Chem B, 1999, 103(17):3434-3441.[7] KYOTANI T, TOMITA A. Analysis of the reaction of carbon with NO/N2O using ab initio molecular orbital theory[J]. J Phys Chem B, 1999, 103(17):3434-3441.

    8. [8] ZHANG H, JIANG X, LIU J, SHEN J. New Insights into the Heterogeneous reduction reaction between NO and char-bound nitrogen[J]. Ind Eng Chem Res, 2014, 53(15):6307-6315.[8] ZHANG H, JIANG X, LIU J, SHEN J. New Insights into the Heterogeneous reduction reaction between NO and char-bound nitrogen[J]. Ind Eng Chem Res, 2014, 53(15):6307-6315.

    9. [9] ZHANG X, ZHOU Z, ZHOU J, LIU J, CEN K. Density functional study of NO desorption from oxidation of nitrogen containing char by O2[J]. Combust Sci Technol, 2012, 184(4):445-455.[9] ZHANG X, ZHOU Z, ZHOU J, LIU J, CEN K. Density functional study of NO desorption from oxidation of nitrogen containing char by O2[J]. Combust Sci Technol, 2012, 184(4):445-455.

    10. [10] ZHOU Z, ZHANG X, ZHOU J, LIU J, CEN K. A molecular modeling study of N2 desorption from NO heterogeneous reduction on char[J]. Energy Source Part A, 2013, 36(2):158-166.[10] ZHOU Z, ZHANG X, ZHOU J, LIU J, CEN K. A molecular modeling study of N2 desorption from NO heterogeneous reduction on char[J]. Energy Source Part A, 2013, 36(2):158-166.

    11. [11] MONTOYA A, MONDRAGON F, TRUONG T N. Kinetics of nitric oxide desorption from carbonaceous surfaces[J]. Fuel Process Technol, 2002, 77:453-458.[11] MONTOYA A, MONDRAGON F, TRUONG T N. Kinetics of nitric oxide desorption from carbonaceous surfaces[J]. Fuel Process Technol, 2002, 77:453-458.

    12. [12] 张秀霞,周志军,周俊虎,姜树栋,刘建忠,岑可法. N2O在焦炭表面异相生成和分解机理的密度泛函理论研究[J].燃料化学学报, 2011, 39(11):806-811. (ZHANG Xiu-xia, ZHOU Zhi-jun, ZHOU Jun-huo, JIANG Chu-dong, LIU Jian-zhong, CEN Ke-fa. A study of functional study of heterogeneous formation and decomposition of N2O on the surface of char[J]. J Fuel Chem Technol, 2011, 39(11):806-811.)[12] 张秀霞,周志军,周俊虎,姜树栋,刘建忠,岑可法. N2O在焦炭表面异相生成和分解机理的密度泛函理论研究[J].燃料化学学报, 2011, 39(11):806-811. (ZHANG Xiu-xia, ZHOU Zhi-jun, ZHOU Jun-huo, JIANG Chu-dong, LIU Jian-zhong, CEN Ke-fa. A study of functional study of heterogeneous formation and decomposition of N2O on the surface of char[J]. J Fuel Chem Technol, 2011, 39(11):806-811.)

    13. [13] 温正城,王智化,周俊虎,周志军,刘建忠,岑可法.金属钙对煤焦异相还原NO催化机理的量子化学研究[J].燃烧科学与技术, 2009, 15(6):505-510. (WEN Zheng-cheng, WANG Zhi-hua, ZHOU Jun-hu, ZHOU Zhi-jun, LIU Jian-zhong, CEN Ke-fa. Quantum chemistry study on catalytic mechanism of Ca on NO-char heterogeneous reaction[J]. J Combust Sci Technol, 2009, 15(6):505-510.)[13] 温正城,王智化,周俊虎,周志军,刘建忠,岑可法.金属钙对煤焦异相还原NO催化机理的量子化学研究[J].燃烧科学与技术, 2009, 15(6):505-510. (WEN Zheng-cheng, WANG Zhi-hua, ZHOU Jun-hu, ZHOU Zhi-jun, LIU Jian-zhong, CEN Ke-fa. Quantum chemistry study on catalytic mechanism of Ca on NO-char heterogeneous reaction[J]. J Combust Sci Technol, 2009, 15(6):505-510.)

    14. [14] SENDT K, HAYNES B S. Density functional study of the chemisorption of O2 across two rings of the armchair surface of graphite[J]. J Phys Chem C, 2007, 111(14):5465-5473.[14] SENDT K, HAYNES B S. Density functional study of the chemisorption of O2 across two rings of the armchair surface of graphite[J]. J Phys Chem C, 2007, 111(14):5465-5473.

    15. [15] SENDT K, HAYNES B S. Density functional study of the reaction of O2 with a single site on the zigzag edge of graphene[J]. Proc Combust Inst, 2011, 33(2):1851-1858.[15] SENDT K, HAYNES B S. Density functional study of the reaction of O2 with a single site on the zigzag edge of graphene[J]. Proc Combust Inst, 2011, 33(2):1851-1858.

    16. [16] DENIS P A, IRIBARNE F. Theoretical investigation on the interaction between beryllium, magnesium and calcium with benzene, coronene, cirumcoronene and graphene[J]. Chem Phys, 2014, 430:1-6.[16] DENIS P A, IRIBARNE F. Theoretical investigation on the interaction between beryllium, magnesium and calcium with benzene, coronene, cirumcoronene and graphene[J]. Chem Phys, 2014, 430:1-6.

    17. [17] OUBAL M, PICAUD S, RAYEZ M T, RAYEZ J C. Water adsorption on oxidized single atomic vacancies present at the surface of small carbonaceous nanoparticles modeling soot[J]. Chemphyschem, 2010, 11(18):4088-4096.[17] OUBAL M, PICAUD S, RAYEZ M T, RAYEZ J C. Water adsorption on oxidized single atomic vacancies present at the surface of small carbonaceous nanoparticles modeling soot[J]. Chemphyschem, 2010, 11(18):4088-4096.

    18. [18] GARCIA-FERNANDEZ C, PICAUD S, RAYEZ M T, RAYEZ J C, RUBAYO-SONEIRA J. First-principles study of the interaction between NO and large carbonaceous clusters modeling the soot surface[J]. J Phys Chem A, 2014, 118(8):1443-1450.[18] GARCIA-FERNANDEZ C, PICAUD S, RAYEZ M T, RAYEZ J C, RUBAYO-SONEIRA J. First-principles study of the interaction between NO and large carbonaceous clusters modeling the soot surface[J]. J Phys Chem A, 2014, 118(8):1443-1450.

    19. [19] AO Z, DOU S, XU Z, JIANG Q, WANG G. Hydrogen storage in porous graphene with Al decoration[J]. Int J Hydrogen Energy, 2014, 39(28):16244-16251.[19] AO Z, DOU S, XU Z, JIANG Q, WANG G. Hydrogen storage in porous graphene with Al decoration[J]. Int J Hydrogen Energy, 2014, 39(28):16244-16251.

    20. [20] LIU W, LIU Y, WANG R. Prediction of hydrogen storage on Y-decorated graphene:A density functional theory study[J]. Appl Surf Sci, 2014, 296:204-208.[20] LIU W, LIU Y, WANG R. Prediction of hydrogen storage on Y-decorated graphene:A density functional theory study[J]. Appl Surf Sci, 2014, 296:204-208.

    21. [21] NACHIMUTHU S, LAI P J, JIANG J C. Efficient hydrogen storage in boron doped graphene decorated by transition metals-A first-principles study[J]. Carbon, 2014, 73:132-140.[21] NACHIMUTHU S, LAI P J, JIANG J C. Efficient hydrogen storage in boron doped graphene decorated by transition metals-A first-principles study[J]. Carbon, 2014, 73:132-140.

    22. [22] QIU P, HUANG H, ZHANG J, LIU L, CHEN Y. Catalytic effects of main metals in coal ash on advanced reburning of pulverized coal[J]. Energy Fuels, 2010, 24:4919-4924.[22] QIU P, HUANG H, ZHANG J, LIU L, CHEN Y. Catalytic effects of main metals in coal ash on advanced reburning of pulverized coal[J]. Energy Fuels, 2010, 24:4919-4924.

    23. [23] DELLEY B. An all-electron numerical method for solving the local density functional for polyatomic molecules[J]. J Chem Phys, 1990, 92(1):508-517.[23] DELLEY B. An all-electron numerical method for solving the local density functional for polyatomic molecules[J]. J Chem Phys, 1990, 92(1):508-517.

    24. [24] DELLEY B. From molecules to solids with the DMol(3) approach[J]. J Chem Phys, 2000, 113(18):7756-7764.[24] DELLEY B. From molecules to solids with the DMol(3) approach[J]. J Chem Phys, 2000, 113(18):7756-7764.

    25. [25] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Phys Rev Lett, 1996, 77(18):3865-3868.[25] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Phys Rev Lett, 1996, 77(18):3865-3868.

    26. [26] PERDEW J P, YUE W. Accurate and simple analytic representation of the electron-gas correlation energy[J]. Phys Rev B, 1992, 45(23):13244-13249.[26] PERDEW J P, YUE W. Accurate and simple analytic representation of the electron-gas correlation energy[J]. Phys Rev B, 1992, 45(23):13244-13249.

    27. [27] TKATCHENKO A, SCHEFFLER M. Accurate molecular van der waals interactions from ground-state electron density and free-atom reference data[J]. Phys Rev Lett, 2009, 102:073005.[27] TKATCHENKO A, SCHEFFLER M. Accurate molecular van der waals interactions from ground-state electron density and free-atom reference data[J]. Phys Rev Lett, 2009, 102:073005.

    28. [28] ORTMANN F, BECHSTEDT F, SCHMIDT W G. Semiempirical van der Waals correction to the density functional description of solids and molecular structures[J]. Phys Rev B, 2006, 73:205101.[28] ORTMANN F, BECHSTEDT F, SCHMIDT W G. Semiempirical van der Waals correction to the density functional description of solids and molecular structures[J]. Phys Rev B, 2006, 73:205101.

    29. [29] MONKHORST H J, PACK J D. Special points for Brillouin-zone integrations[J]. Phys Rev B, 1976, 13(12):5188-5192.[29] MONKHORST H J, PACK J D. Special points for Brillouin-zone integrations[J]. Phys Rev B, 1976, 13(12):5188-5192.

    30. [30] DELLEY B. Hardness conserving semilocal pseudopotentials[J]. Phys Rev B, 2002, 66:155125.[30] DELLEY B. Hardness conserving semilocal pseudopotentials[J]. Phys Rev B, 2002, 66:155125.

    31. [31] ATACA C, AKTURK E, CIRACI S. Hydrogen storage of calcium atoms adsorbed on graphene:First-principles plane wave calculations[J]. Phys Rev B, 2009, 79:041406.[31] ATACA C, AKTURK E, CIRACI S. Hydrogen storage of calcium atoms adsorbed on graphene:First-principles plane wave calculations[J]. Phys Rev B, 2009, 79:041406.

    32. [32] BEHESHTI E, NOJEH A, SERVATI P. A first-principles study of calcium-decorated, boron-doped graphene for high capacity hydrogen storage[J]. Carbon, 2011, 49(5):1561-1567.[32] BEHESHTI E, NOJEH A, SERVATI P. A first-principles study of calcium-decorated, boron-doped graphene for high capacity hydrogen storage[J]. Carbon, 2011, 49(5):1561-1567.

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  724
  • HTML全文浏览量:  100
文章相关
  • 收稿日期:  2015-06-23
  • 网络出版日期:  2015-08-21
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章