Citation: ZHANG Lei, LEI Jun-teng, TIAN Yuan, HU Xin, BAI Jin, LIU Dan, YANG Yi, PAN Li-wei. Effect of precursor and precipitant concentration on the performance of CuO/ZnO/CeO2-ZrO2 catalyst for methanol steam reforming[J]. Journal of Fuel Chemistry and Technology, ;2015, 43(11): 1366-1374. shu

Effect of precursor and precipitant concentration on the performance of CuO/ZnO/CeO2-ZrO2 catalyst for methanol steam reforming

  • Corresponding author: ZHANG Lei,  LIU Dan, 
  • Received Date: 11 May 2015
    Available Online: 3 July 2015

    Fund Project: 国家自然科学基金(21576211) (21576211)辽宁省教育厅科学研究一般项目(L2014157) (L2014157)教育部新世纪优秀人才支持计划(NCET-11-1011) (NCET-11-1011)天津市应用基础与前沿技术研究(13JCYBJC41600)资助 (13JCYBJC41600)

  • A series of CuO/ZnO/CeO2-ZrO2 catalysts for methanol steam reforming were prepared by a co-precipitation procedure, and the effect of precursor and precipitant concentration on the catalytic perforemance was investigated. All the catalysts were characterized by N2 adsorption, XRD, H2-TPR, and XPS. It is shown that the precursor and precipitant concentration remarkably influenced the catalyst structure and property. When the precursor concentration was 0.1mol/L and the precipitant concentration was 0.5mol/L, the catalyst exhibited the best activity with suppressed CO formation. During 360h run time, the highest methanol conversion reached 100%, the H2 concentration was above 74.5%, and the CO concentration was below 0.8% in the reforming gas. The catalyst had excellent reforming performance without deactivation during 360h run time.
  • 加载中
    1. [1]

      [1] JACOBSON M Z, COLELLA W G, GOLDEN D. Cleaning the air and improving health with hydrogen fuel-cell vehicles[J]. Science, 2005, 308(5730): 1901-1905.

    2. [2]

      [2] PAN L W, NI C J, ZHANG X B, YUAN Z S, ZHANG C X, WANG S D. Study on a compact methanol reformer for a miniature fuel cell[J]. Int J Hydrogen Energy, 2011, 36(1): 319-325.

    3. [3]

      [3] 张磊, 潘立卫, 倪长军, 赵生生, 王树东, 胡永康, 王安杰, 蒋凯. 甲醇水蒸气重整制氢反应条件的优化[J]. 燃料化学学报, 2013, 41(1): 116-122. (ZHANG Lei, PAN Li-wei, NI Chang-jun, ZHAO Sheng-sheng, WANG Shu-dong, HU Yong-kang, WANG An-jie, JIANG Kai. Optimization of methanol steam reforming for hydrogen[J]. J Fuel Chem Technol, 2013, 41(1): 116-122.)

    4. [4]

      [4] 张磊, 潘立卫, 倪长军, 彭家喜, 赵生生, 王树东, 胡永康, 王安杰.CuO/ZnO/CeO2/ZrO2催化剂上甲醇水蒸气重整制氢反应机理的研究[J]. 大连理工大学学报, 2014, 54(1): 13-19. (ZHANG Lei, PAN Li-wei, NI Chang-jun, PENG Jia-xi, ZHAO Sheng-sheng, WANG Shu-dong, HU Yong-kang, WANG An-jie. Research on mechanistic of methanol steam reforming for hydrogen-making over CuO/ZnO/CeO2/ZrO2 catalyst[J]. J Dalian Univ Technol, 2014, 54(1): 13-19.)

    5. [5]

      [5] AGRELL J, GERMANI G, JARAS S G, BOUTONNET M. Production of hydrogen by partialoxidation of methanol over ZnO-supported palladium catalysts prepared by microemulsion technique[J]. Appl Catal A: Gen, 2003, 242(2): 233-245.

    6. [6]

      [6] CUBEIRO M L, FIERRO J L G. Selective production of hydrogen by partial oxdiation of methanol over ZnO-supported palladium catalysts[J]. J Catal, 1998, 179(1): 150-162.

    7. [7]

      [7] MU X, PAN L W, LIU N, ZHANG C X, LI S Y, SUN G Q, WANG S D. Autothermal reforming of methanol in a mini-reactor for miniature fuel cell[J]. Int J Hydrogen Energy, 2007, 32(15): 3327-3334.

    8. [8]

      [8] LIU N, YUAN Z S, WANG S D, ZHANG C X, WANG S J, LI D Y.Characterization and performance of a ZnO-ZnCr2O4/CeO2-ZrO2 monolithic catalyst for hydrogen production by methanol auto-thermal reforming process[J]. Int J Hydrogen Energy, 2008, 33(6): 1643-1651.

    9. [9]

      [9] LIU N, YUAN Z S, WANG C W, WANG S D, ZHANG C X, WANG S J. The role of CeO2-ZrO2 as support in the ZnO-ZnCr2O4 catalysts for autothermal reforming of methanol[J]. Fuel Process Technol, 2008, 89(6): 574-581.

    10. [10]

      [10] HOLLADAY J D, HU J, KING D L, WANG Y. An overview of hydrogen production technologies[J]. Catal Today, 2009, 139(4): 244-260.

    11. [11]

      [11] ZHANG L, PAN L W, NI C J, SUN T J, ZHAO S S, WANG S D, WANG A J, HU Y K. CeO2-ZrO2-promoted CuO/ZnO catalyst for methanol steam reforming[J]. Int J Hydrogen Energy, 2013, 38(11): 4397-4406.

    12. [12]

      [12] MATTER P H, BRADEN D J, OZKAN U S. Steam reforming of methanol to H2 over nonreduced Zr-containing CuO/ZnO catalysts [J]. J Catal, 2004, 223(2): 340-351.

    13. [13]

      [13] JONES S D, HAGELIN-WEAVER H E. Steam reforming of methanol over CeO2-and ZrO2-promoted Cu-ZnO catalysts supported on nanoparticle Al2O3[J]. Appl Catal B: Environ, 2009, 90(1/2): 195-204.

    14. [14]

      [14] HUANG G, LIAW B J, JHANG C J, CHEN Y Z. Steam reforming of methanol over Cu/ZnO/CeO2/ZrO2/Al2O3 catalysts[J]. Appl Catal A: Gen, 2009, 358(1): 7-12.

    15. [15]

      [15] 张磊, 潘立卫, 倪长军, 孙天军, 王树东, 胡永康, 王安杰, 赵生生. 陈化时间对CuO/ZnO/CeO2-ZrO2甲醇水蒸气重整制氢催化剂性能的影响[J]. 燃料化学学报, 2013, 41(7): 883-888. (ZHANG Lei, PAN Li-wei, NI Chang-jun, SUN Tian-jun, WANG Shu-dong, HU Yong-kang, WANG An-jie, ZHAO Sheng-sheng. Effect of precipitation aging time on the performance of CuO/ZnO/CeO2-ZrO2 for methanol steam reforming[J]. J Fuel Chem Technol, 2013, 41(7): 883-888.)

    16. [16]

      [16] 张磊, 潘立卫, 倪长军, 孙天军, 赵生生, 王树东, 胡永康, 王安杰. 沉淀温度对CuO/ZnO/CeO2/ZrO2甲醇水蒸气重整制氢催化剂性能的影响[J]. 催化学报, 2012, 33(12): 1958-1964. (ZHANG Lei, PAN Li-wei, NI Chang-jun, SUN Tian-jun, ZHAO Sheng-sheng, WANG Shu-dong, HU Yong-kang, WANG An-jie. Effect of precipitation temperature on the performance of CuO/ZnO/CeO2/ZrO2 catalyst for methanol steam reforming[J]. Chin J Catal, 2012, 33(12): 1958-1964.)

    17. [17]

      [17] MATSUMURA Y, ISHIBE H. High temperature steam reforming of methanol over Cu/ZnO/ZrO2 catalysts[J]. Appl Catal B: Environ, 2009, 91(1/2): 524-532.

    18. [18]

      [18] BREEN J P, ROSS J R H. Methanol reforming for fuel-cell applications: Development of zirconia-containing Cu-Zn-Al catalysts[J]. Catal Today, 1999, 51(3/4): 521-533.

    19. [19]

      [19] CAO L, NI C J, YUAN Z S, WANG S D. Correlation between catalystic selectivity and oxygen storage capacity in autothermal reforming of methane over Rh/Ce0.45Zr0.45RE0.1 catalysts (RE=La, Pr, Nd, Sm, Eu, Gd, Tb)[J]. Catal Commun, 2009, 10(8): 1192-1195.

    20. [20]

      [20] SHEN J P, SONG C S. Influece of preparation method on performance of Cu/Zn-based catalysts for low-temperature steam reforming and oxidative steam reforming of methanol for H2 production for fuel cells[J]. Catal Today, 2002, 77(1/2): 89-98.

    21. [21]

      [21] 房德仁, 刘中民, 杨越, 孟霜鹤, 索掌怀, 陈峰.老化时间对Cu/ZnO/Al2O3合成甲醇催化剂性能的影响[J]. 燃料化学学报, 2006, 34(1): 96-99. (FANG De-ren, LIU Zhong-min, YANG Yue, MENG Shuang-he, SUO Zhang-huai, CHEN Feng. Influence of aging time on the properties of Cu/ZnO/Al2O3 catalysts for methanol synthesis[J]. J Fuel Chem Technol, 2006, 34(1): 96-99.)

    22. [22]

      [22] 房德仁, 刘中民, 杨越, 孟霜鹤, 索掌怀, 陈峰.沉淀温度对CuO/ZnO/Al2O3催化剂前驱物相及催化水煤气变换反应活性的影响[J]. 催化学报, 2004, 25(11): 920-924. (FANG De-ren, LIU Zhong-min, YANG Yue, MENG Shuang-he, SUO Zhang-huai, CHEN Feng. Influence of precipitation temperature on phase composition of precursor of CuO/ZnO/Al2O3 catalyst and its catalytic activity for water gas shift reaction[J]. Chin J Catal, 2004, 25(11): 920-924.)

    23. [23]

      [23] 郭彦鑫. 沉淀法制备铜基甲醇合成催化剂的研究[J]. 化学工业与工程技术, 2010, 31(5): 42-45. (GUO Yan-xin. Study progress on copper-based catalysts for methanol synthesis by co- precipitation[J]. J Chem Ind Eng, 2010, 31(5): 42-45.)

    24. [24]

      [24] TAYLOR S H, HUTCHINGS G J, MIRZAEI A A. The preparation and activity of copper zinc oxide catalysts for ambient temperature carbon monoxide oxidation[J]. Catal Today, 2003, 84(3/4): 113-119.

    25. [25]

      [25] FUJITANI T, NAKAMURA J. The chemical modification seen in the Cu/ZnO methanol synthesis catalysts[J]. Appl Catal A: Gen, 2000, 191(1/2): 111-129.

    26. [26]

      [26] BOWKER M, HADDEN R A, HOUGHTON H, HYLAND J N K, WANGH K C. The mechanism of methanol synthesis on copper/zinc oxide/alumina catalysts[J]. J Catal, 1988, 109(2): 263-273.

    27. [27]

      [27] DUPREZ D, FERHAT-HAMIDA Z, BETTAHAR M M. Surface mobility and reactivity of oxygen species on a copper-zinc catalyst in methanol synthesis[J]. J Catal, 1990, 124(1): 1-11.

    28. [28]

      [28] HURST N W, GENTRY S J, JONES A, MCNICOL B D.Temperature programmed reduction[J]. Catal Rev Sci Eng, 1982, 24(2): 233-309.

    29. [29]

      [29] PATEL S, PANT K K. Hydrogen production by oxidative steam reforming of methanol using ceria promoted copper-alumina catalysts[J]. Fuel Process Technol, 2007, 88(8): 825-832.

    30. [30]

      [30] LIU Y Y, HAYAKAWA T, SUZUKI K, HAMAKAWA S, TSUNODA T, ISHII T, KUMAGAI M. Highly active copper/ceria catalysts for steam reforming of methanol[J]. Appl Catal A: Gen, 2002, 223(1/2): 137-145.

    31. [31]

      [31] RAIMONDI F, GEISSLER K, WANBACH J, WOKAUN A. Hydrogen production by methanol reforming: Post-reaction characterisation of a Cu/ZnO/Al2O3 catalyst by XPS and TPD[J]. Appl Sur Sci, 2002, 189(1): 59-71.

    32. [32]

      [32] OGUCHI H, KANAI H, UTANI K, MATSUMURA Y, IMAMURA S. Cu2O as active species in the steam reforming of methanol by CuO/ZrO2 catalysts[J]. Appl Catal A: Gen, 2005, 293(1): 64-70.

    33. [33]

      [33] JONES S D, NEAL L M, HAGELIN-WEAVER H E. Steam reforming of methanol using Cu-ZnO catalysts supported on nanoparticle alumina[J]. Appl Catal B: Environ, 2008, 84(3/4): 631-642.

    34. [34]

      [34] CHUSUEI C C, BROOKSHIER M A, GOODMAN D W.Correlation of relative X-ray photoelectronspectroscopy shake-up intensity with CuO particle size[J]. Langmuir, 1999, 15(8): 2806-2808.

    35. [35]

      [35] MULLINS D R, OVERBURY S H, HUNTLEY D R. Electron spectroscopy of single crystal and polycrystalline cerium oxide surfaces[J]. Surf Sci, 1998, 409(2): 307-319.

    36. [36]

      [36] 罗丽珠. 金属Ce表面氧化反应XPS研究[D]. 四川: 中国工程物理研究院, 2005. (LUO Li-zhu. Study on surface oxidation of cerium metal by XPS[D]. Sichuan: China Academy of Engineering Physics, 2005.)

    37. [37]

      [37] 王晓红, 卢冠忠, 郭耘, 乔东升, 张志刚, 郭杨龙, 李春忠. 负载型CeO2-ZrO2固熔体的性能及其在甲烷燃烧Pd催化剂中的应用[J]. 催化学报, 2008, 29(10): 1043-1050. (WANG Xiao-hong, LU Guan-zhong, GUO Yun, QIAN Dong-sheng, ZHANG Zhi-gang, GUO Yang-long, LI Chun-zhong. Properties of CeO2-ZrO2 solid solution supported on Si-modified Alumina and its application in Pd catalyst for methane combustion[J]. Chin J Catal, 2008, 29(10): 1043-1050.)

  • 加载中
    1. [1]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    2. [2]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    3. [3]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    4. [4]

      Yuchen ZhouHuanmin LiuHongxing LiXinyu SongYonghua TangPeng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067

    5. [5]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    6. [6]

      Qin HuLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of Electron Bridge and Activation of MoS2 Inert Basal Planes by Ni Doping for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-0. doi: 10.3866/PKU.WHXB202406024

    7. [7]

      Zhaoyu WenNa HanYanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001

    8. [8]

      Xue LiuLipeng WangLuling LiKai WangWenju LiuBiao HuDaofan CaoFenghao JiangJunguo LiKe Liu . Research on Cu-Based and Pt-Based Catalysts for Hydrogen Production through Methanol Steam Reforming. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-0. doi: 10.1016/j.actphy.2025.100049

    9. [9]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    10. [10]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    11. [11]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    12. [12]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    13. [13]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    14. [14]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    15. [15]

      Qing LiGuangxun ZhangYuxia XuYangyang SunHuan Pang . P-Regulated Hierarchical Structure Ni2P Assemblies toward Efficient Electrochemical Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(9): 2308045-0. doi: 10.3866/PKU.WHXB202308045

    16. [16]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    17. [17]

      Wang WangYucheng LiuShengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059

    18. [18]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    19. [19]

      Jingping LiSuding YanJiaxi WuQiang ChengKai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104

    20. [20]

      Shijie RenMingze GaoRui-Ting GaoLei Wang . Bimetallic Oxyhydroxide Cocatalyst Derived from CoFe MOF for Stable Solar Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(7): 2307040-0. doi: 10.3866/PKU.WHXB202307040

Metrics
  • PDF Downloads(0)
  • Abstract views(611)
  • HTML views(55)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return