Citation: WANG Bin, ZHANG Qiang, LI Chun-yi, SHAN Hong-hong. Study on the preliminary cracking of heavy vacuum gas oil: Effect of acid type and contacting order of Lewis and Brönsted sites of matrices on the yield of LPG olefins[J]. Journal of Fuel Chemistry and Technology, ;2015, 43(11): 1350-1358. shu

Study on the preliminary cracking of heavy vacuum gas oil: Effect of acid type and contacting order of Lewis and Brönsted sites of matrices on the yield of LPG olefins

  • Corresponding author: LI Chun-yi, 
  • Received Date: 27 May 2015
    Available Online: 2 August 2015

    Fund Project: 国家自然科学基金(U1462205,21406270) (U1462205,21406270)研究生创新工程(YCX2015028) (YCX2015028)中央高校基本科研业务费专项资金(15CX06036A) (15CX06036A)青岛市民生计划(13-1-3-126-nsh)资助项目 (13-1-3-126-nsh)

  • A series of alumina with similar textural properties but different acidities were prepared and used as the matrix components of the FCC catalysts. The effect of acid type of matrices and contacting order of acid sites of different types on the yield of LPG olefins in catalytic cracking of heavy vacuum gas oil (HVGO) was investigated. The results showed that the matrix is more conductive to the formation of LPG olefins from the aspect of reaction route, in comparison with the REUSY molecular sieves. When there are Brönsted acidity on the matrix surface and/or HVGO molecules first contact with Lewis acid sites and then react with Brönsted acid sites during the matrix-precracking process, cracking reactions are enhanced while hydrogen transfer reactions are restricted, which facilitate to increase the yield of LPG olefins.
  • 加载中
    1. [1]

      [1] LI C, YANG C, SHAN H. Maximizing propylene yield by two-stage riser catalytic cracking of heavy oil[J]. Ind Eng Chem Res, 2007, 46(14): 4914-4920.

    2. [2]

      [2] CORMA A, MELO F V, SAUVANAUD L, ORTEGA F. Light cracked naphtha processing: Controlling chemistry for maximum propylene production[J]. Catal Today, 2005, 107-108: 699-706.

    3. [3]

      [3] CORMA A, FARALDOS M, MARTINEZ A, MIFSUD A. Hydrogen transfer on USY zeolites during gas oil cracking: Influence of the adsorption characteristics of the zeolite catalysts[J]. J Catal, 1990, 122(2): 230-239.

    4. [4]

      [4] OTTERSTEDT J E, ZHUY, STERTE J. Catalytic cracking of heavy oil over catalysts containing different types of zeolite Y in active and inactive matrices[J]. Appl Catal, 1988, 38(1): 143-155.

    5. [5]

      [5] FENG R, LIU S, BAI P, QIAO K, WANG Y H, MEGREN M J, YAN Z F. Preparation and characterization of γ-Al2O3 with rich Brönsted acid sites and its application in the fluid catalytic cracking process[J]. J Phys Chem C, 2014, 118(12): 6226-6234.

    6. [6]

      [6] XU S, ZHANG Q, FENG Z, MENG X, ZHAO T, LI C, YANG C, SHAN H. A high-surface-area silicoaluminophosphate material rich in Brönsted acid sites as a matrix in catalytic cracking[J]. J Nat Gas Chem, 2012, 21(6): 685-693.

    7. [7]

      [7] HOLLAND B T, SUBRAMANI V, GANGWAL S K. Utilizing colloidal silica and aluminum-doped colloidal silica as a binder in FCC catalysts: Effects on porosity, acidity, and microactivity[J]. Ind Eng Chem Res, 2007, 46(13): 4486-4496.

    8. [8]

      [8] CHEN W, HAN D, SUN X, LI C. Studies on the preliminary cracking of heavy oils: Contributions of various factors[J]. Fuel, 2013, 106: 498-504.

    9. [9]

      [9] WANG B, HAN C, ZHANG Q, LI C,YANG C, SHAN H, Studies on the preliminary cracking of heany oils: The effect of matrix acidity and a proposal of a new reaction route[J]. Energy Fuels, 2015, doi: 10.1021/acs.energyfuels.5b01280.

    10. [10]

      [10] CORMA A, MIGUEL P J, ORCHILLES A V. The role of reaction temperature and cracking catalyst characteristics in determining the relative rates of protolytic cracking, chain propagation, and hydrogen transfer[J]. J Catal, 1994, 145(1): 171-180.

    11. [11]

      [11] 龚剑洪, 龙军, 许友好. 催化裂化过程中负氢离子转移反应和氢转移反应的不同特征[J]. 催化学报, 2007, 28(1): 67-72. (GONG Jian-hong, LONG Jun, XU You-hao. Different reaction characteristics of hydride transfer and hydrogen transfer in catalytic cracking[J]. Chin J Catal, 2007, 28(1): 67-72.)

    12. [12]

      [12] 朱华元, 张信. 含碱土金属分子筛对 FCC 催化剂催化性能的影响[J]. 石油学报(石油加工), 2001, 17(6): 6-10. (ZHU Hua-yuan, ZHANG Xin. Influence of zeolites containing alkaline earth metal on performance of FCC catalysts[J]. Acta Pet Sin ( Pet Process sect), 2001, 17(6): 6-10.)

    13. [13]

      [13] ALERASOOL S, DOOLIN P K, HOFFMAN J F. Matrix acidity determination: A bench scale method for predicting resid cracking of FCC catalysts[J]. Ind Eng Chem Res, 1995, 34(2): 434-439.

    14. [14]

      [14] EMEIS C. Determination of integrated molar extinction coefficients for infrared absorption bands of pyridine adsorbed on solid acid catalysts[J]. J Catal, 1993, 141(2): 347-354.

    15. [15]

      [15] KORTUNOV P, VASENKOV S, KARGER J. The role of mesopores in intracrystalline transport in USY zeolite: PFG NMR diffusion study on various length scales[J]. J Am Chem Soc, 2005, 127(37): 13055-13059.

    16. [16]

      [16] ABBOT J. Role of Brönsted and Lewis acid sites during cracking reactions of alkanes[J]. Appl Catal, 1989, 47(1): 33-44.

    17. [17]

      [17] BALLMOOS R V, HAYWARD C T. Matrix vs zeolite contributions to the acidity of fluid cracking catalysts[J]. Stud Surf Sci Catal, 1991, 65: 171-183.

  • 加载中
    1. [1]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    2. [2]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    3. [3]

      Jingyi XieQianxi LüWeizhen QiaoChenyu BuYusheng ZhangXuejun ZhaiRenqing LüYongming ChaiBin Dong . Enhancing Cobalt―Oxygen Bond to Stabilize Defective Co2MnO4 in Acidic Oxygen Evolution. Acta Physico-Chimica Sinica, 2024, 40(3): 2305021-0. doi: 10.3866/PKU.WHXB202305021

    4. [4]

      Zian Lin Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066

    5. [5]

      Chunai Dai Yongsheng Han Luting Yan Zhen Li Yingze Cao . Ideological and Political Design of Solid-liquid Contact Angle Measurement Experiment. University Chemistry, 2024, 39(2): 28-33. doi: 10.3866/PKU.DXHX202306065

    6. [6]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    7. [7]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

    8. [8]

      Heng ChenLonghui NieKai XuYiqiong YangCaihong Fang . Remarkable Photocatalytic H2O2 Production Efficiency over Ultrathin g-C3N4 Nanosheet with Large Surface Area and Enhanced Crystallinity by Two-Step Calcination. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-0. doi: 10.3866/PKU.WHXB202406019

    9. [9]

      Qingyang Cui Feng Yu Zirun Wang Bangkun Jin Wanqun Hu Wan Li . From Jelly to Soft Matter: Preparation and Properties-Exploring of Different Kinds of Hydrogels. University Chemistry, 2024, 39(9): 338-348. doi: 10.3866/PKU.DXHX202309046

    10. [10]

      Hui WangAbdelkader LabidiMenghan RenFeroz ShaikChuanyi Wang . Recent Progress of Microstructure-Regulated g-C3N4 in Photocatalytic NO Conversion: The Pivotal Roles of Adsorption/Activation Sites. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-0. doi: 10.1016/j.actphy.2024.100039

    11. [11]

      Xinyu YinHaiyang ShiYu WangXuefei WangPing WangHuogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-0. doi: 10.3866/PKU.WHXB202312007

    12. [12]

      Ruiqin FengYe FanYun FangYongmei Xia . Strategy for Regulating Surface Protrusion of Gold Nanoflowers and Their Surface-Enhanced Raman Scattering. Acta Physico-Chimica Sinica, 2024, 40(4): 2304020-0. doi: 10.3866/PKU.WHXB202304020

    13. [13]

      Mengfei HeChao ChenYue TangSi MengZunfa WangLiyu WangJiabao XingXinyu ZhangJiahui HuangJiangbo LuHongmei JingXiangyu LiuHua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 2310029-0. doi: 10.3866/PKU.WHXB202310029

    14. [14]

      Honglian Liang Xiaozhe Kuang Fuping Wang Yu Chen . Exploration and Practice of Integrating Ideological and Political Education into Physical Chemistry: a Case on Surface Tension and Gibbs Free Energy. University Chemistry, 2024, 39(10): 433-440. doi: 10.12461/PKU.DXHX202405073

    15. [15]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    16. [16]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    17. [17]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    18. [18]

      Yukai Jiang Yihan Wang Yunkai Zhang Yunping Wei Ying Ma Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033

    19. [19]

      Lan Ma Cailu He Ziqi Liu Yaohan Yang Qingxia Ming Xue Luo Tianfeng He Liyun Zhang . Magical Surface Chemistry: Fabrication and Application of Oil-Water Separation Membranes. University Chemistry, 2024, 39(5): 218-227. doi: 10.3866/PKU.DXHX202311046

    20. [20]

      Ruilin Han Xiaoqi Yan . Comparison of Multiple Function Methods for Fitting Surface Tension and Concentration Curves. University Chemistry, 2024, 39(7): 381-385. doi: 10.3866/PKU.DXHX202311023

Metrics
  • PDF Downloads(0)
  • Abstract views(436)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return