Citation: HUANG Jin-bao, WU Shu-bin, LEI Ming, CHENG Hao, LIANG Jia-jin, TONG Hong. Quantum chemistry study on pyrolysis mechanism of lignin dimer model compound[J]. Journal of Fuel Chemistry and Technology, ;2015, 43(11): 1334-1343. shu

Quantum chemistry study on pyrolysis mechanism of lignin dimer model compound

  • Corresponding author: WU Shu-bin, 
  • Received Date: 9 June 2015
    Available Online: 26 July 2015

    Fund Project: 国家自然科学基金(51266002) (51266002)国家重点基础研究发展规划(973计划,2013CB228101) (973计划,2013CB228101)贵州省教育厅自然科学研究招标项目(黔教科研发[2013]405号)资助 (黔教科研发[2013]405号)

  • β-O-4 is the primary type of linkages among the main lignin structure units. The pyrolysis of lignin dimer model compound of β-O-4 linkage was investigated by using density functional theory B3LYP methods at 6-31G(d,p) level. Three possible pyrolysis pathways were proposed:the subsequent reactions after the homolytic cleavage of Cβ-O bond, the subsequent reactions after the homolytic cleavage of Cα-Cβ bond and the concerted reactions. The equilibrium geometries of the reactants, transition states, intermediates and products were optimized and the standard kinetic parameters for each reaction pathway were calculated. The formation mechanism of the main pyrolysis products and the effect of temperature on the pyrolysis mechanism of lignin dimer were analyzed. The calculation results show that the subsequent reaction pathways after the homolytic cleavage of Cβ-O bond and the concerted reaction pathways (1) and (3) are the major reaction channels, whereas the subsequent reaction pathways after the homolytic cleavage of Cα-Cβ and the concerted reaction pathways (2) and (5) are the competitive reaction channels in the pyrolysis process. The main pyrolysis products are phenolic compounds such as guaiacol, 1-guaiacyl-3-hydroxy-acetone, 1-guaiacyl-3-hydroxy-propaldehyde and guaiacyl-formaldehyde. In the pyrolysis process of the lignin dimer, the concerted reactions dominate over the free-radical homolytic reactions at low temperature, whereas but the free-radical reactions prevail over the concerted reactions at high temperatures.
  • 加载中
    1. [1]

      [1] 岳金方, 应浩. 工业木质素的热裂解试验研究[J] . 农业工程学报, 2006, 22(增1) : 125-128. (YUE Jin-fang, YING Hao. Experimental study on industrial lignin pyrolysis[J]. Trans Chin Soc Agric Eng, 2006, 22(Supp 1) : 125-128.)

    2. [2]

      [2] NUNN T R, HOWARD J B, LONGWLL J P, PETERS W A. Product compositions and kinetics in the rapid pyrolysis of milled wood lignin[J]. Ind Eng Chem Process Des Dev, 1985, 24(3): 844-852.

    3. [3]

      [3] MCKENDRY P. Energy production from biomass (part 1): Overview of biomass[J]. Bioresour Technol, 2002, 83(1): 37-46.

    4. [4]

      [4] BESTE A, BUCHANAN Ⅲ A C. Computational study of bond dissociation enthalpies for lignin model compounds: Substituent effects in phenethyl phenyl ethers[J]. J Org Chem, 2009, 74(7): 2837-2841.

    5. [5]

      [5] HUANG X, LIU C, HUANG J, LI H. Theory studies on pyrolysis mechanism of phenethyl phenyl ether[J]. Comput Theor Chem, 2011, 976(1/3): 51-59.

    6. [6]

      [6] 黄金保, 刘朝, 任丽蓉, 童红, 李伟民, 伍丹. 木质素模化物紫丁香酚热解机理的量子化学研究[J]. 燃料化学学报, 2013, 41(6): 657-666. (HUANG Jin-bao, LIU Chao, REN Li-rong, TONG Hong, LI Wei-min, WU Dan. Studies on pyrolysis mechanism of syringol as lignin model compound by quantum chemistry[J]. J Fuel Chem Technol, 2013, 41(6): 657-666.)

    7. [7]

      [7] CABALLERO J A, FONT R, MARCILLA A. Study of the primary pyrolysis of kratf lignin at high heating rates: Yields and kineties[J]. J Anal Appl Pyrolysis, 1996, 36(2): 159-178.

    8. [8]

      [8] 谭洪, 王树荣, 骆仲泱, 余春江, 岑可法. 木质素快速热裂解试验研究[J]. 浙江大学学报(工学版), 2005, 39(5): 710-714. (TAN Hong, WANG Shu-rong, LUO Zhong-yang, YU Chun-jiang, CEN Ke-fa. Experimental study of lignin flash pyrolysis[J]. J Zhejiang Univ (Eng Sci), 2005, 39(5): 710-714.)

    9. [9]

      [9] WANG S, WANG K, LIU Q, GU Y, LUO Z, CEN K, FRANSSON T. Comparison of the pyrolysis behavior of lignins from different tree species[J]. Biotechnol Adv, 2009, 27: 562-67.

    10. [10]

      [10] LIU Q, WANG S, ZHENG Y, LUO Z, CEN K. Mechanism study of wood lignin pyrolysis by using TG-FTIR analysis[J]. J Anal Appl Pyrolysis, 2008, 82(1): 170-177.

    11. [11]

      [11] 刘军利, 蒋剑春, 黄海涛. 木质素CP-GC-MS法裂解行为研究[J]. 林产化学与工业, 2009, 29(suppl): 1-6. (LIU Jun-li, JIANG Jian-chun, HUANG Hai-tao. Study on thermal transformations of lignin under curie-point pyrolysis- gc-ms conditions[J]. Chem Ind For Prod, 2009, 29(suppl): 1-6.)

    12. [12]

      [12] NAKAMURA T, KAWAMOTO H, SAKA S. Pyrolysis behavior of Japanese cedar wood lignin studied with various model dimmers[J]. J Anal Appl Pyrolysis, 2008, 81: 173-182.

    13. [13]

      [13] YANG Q, WU S, LOU R, LV G. Analysis of wheat straw lignin by thermogravimetry and pyrolysis-gas hromatography/mass spectrometry[J]. J Anal Appl Pyrolysis, 2010, 87: 65-69.

    14. [14]

      [14] SURYAN M M, KAFAFI S A, STEIN S E. The thermal decomposition of hydroxy- and methoxy-substituted anisoles[J]. J Am Chem Soc, 1989, 111(4): 1423-1429.

    15. [15]

      [15] BESTE A, BUCHANAN Ⅲ A C. Computational study of bond dissociation enthalpies for lignin model compounds: Substituent effects in phenethyl phenyl ethers[J]. J Org Chem, 2009, 74(7): 2837-2841.

    16. [16]

      [16] ASMADI M, KAWAMOTO H, SAKA S. Thermal reactions of guaiacol and syringol as lignin model aromatic nuclei[J]. J Anal Appl Pyrolysis, 2011, 92: 88-98.

    17. [17]

      [17] HUANG J, LIU C, WU D, TONG H, REN L. Density functional theory studies on pyrolysis mechanism of β-O-4 type lignin dimer model compound[J]. J Anal Appl Pyrolysis, 2014, 109: 98-108.

    18. [18]

      [18] 蒋挺大. 木质素[M]. 北京: 化学工业出版社, 2001. (JIANG Ting-da. Lignin[M]. Beijing: Chemistry Industry Press, 2001.)

    19. [19]

      [19] FRISCH M J, TRUCKS G W, SCHLEGEL H B, et al. GAUSSIAN 03. Gaussian, Inc. Pittsburgh PA, 2003.

    20. [20]

      [20] BRITT P F, BUCHANAN Ⅲ A C, COONEY M J, MARTINEAU D R. Flash vacuum pyrolysis of methoxy-substituted lignin model compounds[J]. J Org Chem, 2000, 65: 1376-1389.

    21. [21]

      [21] NIMLOS M R, BLANKSBY S J, QIAN X, HIMMEL M E, JOHNSON D K. Mechanisms of glycerol dehydration[J]. J Phys Chem A, 2006, 110: 6145-6156.

    22. [22]

      [22] JARVIS M W, DAILY J W, CARSTENSEN H H, DEAN A M, SHARMA S, DAYTON D C, ROBICHAUD D J, NIMLOS M R. Direct detection of products from the pyrolysis of 2-phenethyl phenyl ether[J]. J Phys Chem A, 2011, 115: 428-438.

  • 加载中
    1. [1]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    2. [2]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    3. [3]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    4. [4]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    5. [5]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    6. [6]

      Tongqi Ye Yanqing Wang Qi Wang Huaiping Cong Xianghua Kong Yuewen Ye . Reform of Classical Thermodynamics Curriculum from the Perspective of Computational Chemistry. University Chemistry, 2025, 40(7): 387-392. doi: 10.12461/PKU.DXHX202409128

    7. [7]

      Wei SunYongjing WangKun XiangSaishuai BaiHaitao WangJing ZouArramelJizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015

    8. [8]

      Xiaochen ZhangFei YuJie Ma . Cutting-Edge Applications of Multi-Angle Numerical Simulations for Capacitive Deionization. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-0. doi: 10.3866/PKU.WHXB202311026

    9. [9]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    10. [10]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    11. [11]

      Zhengkun QINZicong PANHui TIANWanyi ZHANGMingxing SONG . A series of iridium(Ⅲ) complexes with fluorophenyl isoquinoline ligand and low-efficiency roll-off properties: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1235-1244. doi: 10.11862/CJIC.20240429

    12. [12]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    13. [13]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    14. [14]

      Kexin YanZhaoqi YeLingtao KongHe LiXue YangYahong ZhangHongbin ZhangYi Tang . Seed-Induced Synthesis of Disc-Cluster Zeolite L Mesocrystals with Ultrashort c-Axis: Morphology Control, Decoupled Mechanism, and Enhanced Adsorption. Acta Physico-Chimica Sinica, 2024, 40(9): 2308019-0. doi: 10.3866/PKU.WHXB202308019

    15. [15]

      Qiqi LiSu ZhangYuting JiangLinna ZhuNannan GuoJing ZhangYutong LiTong WeiZhuangjun Fan . Preparation of High Density Activated Carbon by Mechanical Compression of Precursors for Compact Capacitive Energy Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-0. doi: 10.3866/PKU.WHXB202406009

    16. [16]

      Dongdong Yao JunweiGu Yi Yan Junliang Zhang Yaping Zheng . Teaching Phase Separation Mechanism in Polymer Blends Using Process Representation Teaching Method: A Teaching Design for Challenging Theoretical Concepts in “Polymer Structure and Properties” Course. University Chemistry, 2025, 40(4): 131-137. doi: 10.12461/PKU.DXHX202408125

    17. [17]

      Menglan WeiXiaoxia OuYimeng WangMengyuan ZhangFei TengKaixuan Wang . S-scheme heterojunction g-C3N4/Bi2WO6 highly efficient degradation of levofloxacin: performance, mechanism and degradation pathway. Acta Physico-Chimica Sinica, 2025, 41(9): 100105-0. doi: 10.1016/j.actphy.2025.100105

    18. [18]

      Yanglin JiangMingqing ChenMin LiangYige YaoYan ZhangPeng WangJianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 2309027-0. doi: 10.3866/PKU.WHXB202309027

    19. [19]

      Weilai YuChuanbiao Bie . Unveiling S-Scheme Charge Transfer Mechanism. Acta Physico-Chimica Sinica, 2024, 40(4): 2307022-0. doi: 10.3866/PKU.WHXB202307022

    20. [20]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

Metrics
  • PDF Downloads(0)
  • Abstract views(982)
  • HTML views(204)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return