Citation: ZHANG An-chao, ZHANG Zhi-hui, SHI Jin-ming, CHEN Guo-yan, ZHOU Chang-song, SUN Lu-shi. Effect of preparation methods on the performance of MnOx-TiO2 adsorbents for Hg0 removal and SO2 resistance[J]. Journal of Fuel Chemistry and Technology, ;2015, 43(10): 1258-1266. shu

Effect of preparation methods on the performance of MnOx-TiO2 adsorbents for Hg0 removal and SO2 resistance

  • Corresponding author: ZHANG An-chao, 
  • Received Date: 1 July 2015
    Available Online: 23 August 2015

    Fund Project: 国家自然科学基金(51306046,51166004,51376073) (51306046,51166004,51376073)河南省高校基本科研业务费(NSFRF140204) (NSFRF140204)

  • Aiming at the difficulty of elemental mercury (Hg0) removal from flue gas due to its indissolubility in water and the problem of lower SO2 resistance performance of manganese-based adsorbent, the MnOx-TiO2 adsorbents prepared with impregnation (IM), sol-gel (SG) and deposition-precipitation method (DP) were employed to remove Hg0 in the absence and presence of SO2. The adsorbents were characterized by N2 adsorption-desorption, TG-DSC, XRD, TEM, H2-TPR, and XPS techniques. The results showed that Hg0 removal performance over MnOx-TiO2 adsorbents was markedly influenced by the preparation methods. The adsorbent prepared by DP method exhibited a superior activity for Hg0 adsorption and the best SO2 resistance performance. The characterization results indicated that the Hg0 removal activity did not correlate with the BET surface area. The preparation method of deposition-precipitation could not only lead to an increase of reducibility and high dispersion of MnOx, but also significantly enhance a migration of well-dispersed active phase from bulk to surface, resulting in a higher Mn4+/Mn ratio and the presence of abundant chemisorbed oxygen, which would play an important role in promoting Hg0 removal.
  • 加载中
    1. [1]

      [1] XU W Q, WANG H R, ZHU T Y, KUANG J Y, JING P F. Mercury removal from coal combustion flue gas by modified fly ash[J]. J Environ Sci, 2013, 25(2): 393-398.

    2. [2]

      [2] UDDIN M A, YAMADA T, OCHIAI R. Role of SO2 for elemental mercury removal from coal combustion flue gas by activated carbon[J]. Energy Fuels, 2008, 22(4): 2284-2289.

    3. [3]

      [3] GRANITE E J, PENNLINE H W, HARGIS R A. Novel sorbents for mercury removal from flue gas[J]. Ind Eng Chem Res, 2000, 39(4): 1020-1029.

    4. [4]

      [4] STREETS D G, HAO J M, WU Y, JIANG J K, CHAN M, TIAN H Z, FENG X B. Anthropogenic mercury emissions in china[J]. Atmos Environ, 2005, 39(40): 7789-7806.

    5. [5]

      [5] YANG S J, GUO Y F, YAN N Q, WU D Q, HE, H P, XIE J K, QU Z, JIA J P. Remarkable effect of the incorporation of titanium on the catalytic activity and SO2 poisoning resistance of magnetic Mn-Fe spinel for elemental mercury capture[J]. Appl Catal B: Environ, 2011, 101(3/4): 698-708.

    6. [6]

      [6] PRESTO A A, GRANITE E J. Survey of catalysts for oxidation of mercury in flue gas[J]. Environ Sci Technol, 2006, 40(18): 5601-5609.

    7. [7]

      [7] ZHANG H W, CHEN J T, LIANG P, WANG L. Mercury oxidation and adsorption characteristics of potassium permanganate modified lignite semi-coke[J]. J Environ Sci, 2012, 24(12): 2083-2090.

    8. [8]

      [8] MA Y P, XU H M, ZAN Q, YAN N Q, WANG W H. Absorption characteristics of elemental mercury in mercury chloride solutions[J]. J Environ Sci, 2014, 26(11): 2257-2265.

    9. [9]

      [9] WU Z B, JIN R B, WANG H Q, LIU Y. Effect of ceria doping on SO2 resistance of Mn/TiO2 for selective catalytic reduction of NO with NH3 at low temperature[J]. Catal Commun, 2009, 10(6): 935-939.

    10. [10]

      [10] LIU F D, HE H, DING Y, ZHANG C B. Effect of manganese substitution on the structure and activity of iron titanate catalyst for the selective catalytic reduction of NO with NH3[J]. Appl Catal B: Environ, 2009, 93(1/2): 194-204.

    11. [11]

      [11] 王燕彩, 刘昕, 宁平, 张秋林, 张金辉, 徐利斯, 唐小苏, 王明智. 制备方法对氧化锰八面体分子筛的NH3选择性催化还原NOx性能的影响[J]. 燃料化学学报, 2014, 42(11): 1357-1364.

    12. [12]

      (WANG Yan-cai, LIU Xin, NING Ping, ZHANG Qiu-lin, ZHANG Jin-hui, XU Li-si, TANG Xiao-su, WANG Ming-zhi. Effect of preparation methods on selective catalytic reduction of NOx with NH3 over manganese oxide octahedral molecular sieves[J]. J Fuel Chem Technol, 2014, 42(11): 1357-1364.)

    13. [13]

      [12] SHEN B X, LIU T, ZHAO N, YANG X Y, DENG L D. Iron-doped Mn-Ce/TiO2 catalyst for low temperature selective catalytic reduction of NO with NH3[J]. J Environ Sci, 2010, 22(9): 1447-1454.

    14. [14]

      [13] JIANG B Q, LIU Y, WU Z B. Low-temperature selective catalytic reduction of NO on MnOx/TiO2 prepared by different methods[J]. J Hazard Mater, 2009, 162(2/3): 1249-1254.

    15. [15]

      [14] 张信莉, 王栋, 彭建升, 路春美, 徐丽婷. 煅烧温度对Mn改性γ-Fe2O3催化剂结构及低温SCR脱硝活性的影响[J]. 燃料化学学报, 2015, 43(2): 243-250.

    16. [16]

      (ZHANG Xin-li, WANG Dong, PENG Jian-sheng, LU Chun-mei, XU Li-ting. Influence of calcination temperature on structural property of Mn doped γ-Fe2O3 catalysts and low-temperature SCR activity [J]. J Fuel Chem Technol, 2015, 43(2): 243-250.)

    17. [17]

      [15] WU Z B, TANG N, XIAO L, LIU Y, WANG H Q. MnOx/TiO2 composite nanoxides synthesized by deposition-precipitation method as a superior catalyst for NO oxidation[J]. J Colloid Interf Sci, 2010, 352(1): 143-148.

    18. [18]

      [16] QIAO S H, CHEN J, LI J F, QU Z, LIU P, YAN N Q, JIA J P. Adsorption and catalytic oxidation of gaseous elemental mercury in flue gas over MnOx/alumina[J]. Ind Eng Chem Res, 2009, 48(7): 3317-3322.

    19. [19]

      [17] JI L, SREEKANTH P M, SMIRNIOTIS P G, THIEL S W, PINTO N G. Manganese oxide/titania materials for removal of NOx and elemental mercury from flue gas[J]. Energy Fuels, 2008, 22(4): 2299-2306.

    20. [20]

      [18] XU Y L, ZHONG Q, LIU X Y. Elemental mercury oxidation and adsorption on magnesite powder modied by Mn at low temperature[J]. J Hazard Mater, 2015, 283: 252-259.

    21. [21]

      [19] 游淑淋, 周劲松, 侯文慧, 孟帅琦, 高翔, 骆仲泱. 锰改性活性焦脱除合成气中单质汞的影响因素[J]. 燃料化学学报, 2014, 42(11): 1324-1331.

    22. [22]

      (YOU Shu-lin, ZHOU Jin-song, HOU Wen-hui, MENG Shuai-qi, GAO Xiang, LUO Zhong-yang. Factors influencing the removal of elemental mercury by Mn-AC sorbent in syngas[J]. J Fuel Chem Technol, 2014, 42(11): 1324-1331.)

    23. [23]

      [20] LI H L, WU C Y, LI Y, LI L, ZHAO Y C, ZHANG J Y. Role of flue gas components in mercury oxidation over TiO2 supported MnOx-CeO2 mixed-oxide at low temperature[J]. J Hazard Mater, 2012, 243: 117-123.

    24. [24]

      [21] ZHANG A C, ZHENG W W, SONG J, HU S, LIU Z C, XIANG J. Cobalt manganese oxides modified titania catalysts for oxidation of elemental mercury at low flue gas temperature[J]. Chem Eng J, 2014, 236: 29-38.

    25. [25]

      [22] LI J W, ZHAO P, LIU S T. SnOx-MnOx-TiO2 catalysts with high resistance to chlorine poisoning for low-temperature chlorobenzene oxidation[J]. Appl Catal A: Gen, 2014, 482: 363-369.

    26. [26]

      [23] QI G, YANG R T. Performance and kinetics study for low-temperature SCR of NO with NH3 over MnOx-CeO2 catalyst[J]. J Catal, 2003, 217(2): 434-441.

    27. [27]

      [24] HUANG H Y, LONG R Q, YANG R T. A highly sulfur resistant Pt-Rh/TiO2/Al2O3 storage catalyst for NOx reduction under lean-rich cycles[J]. Appl Catal B: Environ, 2001, 33(2): 127-136.

    28. [28]

      [25] KIJLSTRA W S, BIERVLIET M, POELS E K, BLIEK A. Deactivation by SO2 of MnOx/Al2O3 catalysts used for the selective catalytic reduction of NO with NH3 at low temperatures[J]. Appl Catal B: Environ, 1998, 16(4): 327-337.

    29. [29]

      [26] XU J J, AO Y H, FU D G, YUAN C W. Low-temperature preparation of F-doped TiO2 film and its photocatalytic activity under solar light[J]. Appl Surf Sci, 2008, 254(10): 3033-3038.

    30. [30]

      [27] ZHANG A C, ZHANG Z H, CHEN J J, SHENG W, SUN L S, XIANG J. Effect of calcination temperature on the activity and structure of MnOx/TiO2 adsorbent for Hg0 removal[J]. Fuel Process Technol, 2015, 135: 25-33.

    31. [31]

      [28] KHAN A, SMIRNIOTIS P G. Relationship between temperature-programmed reduction profile and activity of modified ferrite-based catalysts for WGS reaction[J]. J Mol Catal A: Chem, 2008, 280(1/2): 43-51.

    32. [32]

      [29] KAPTEIJN F, SINGOREDJO L, ANDREINI A, MOULIJN J A. Activity and selectivity of pure manganese oxides in the selective catalytic reduction of nitric oxide with ammonia[J]. Appl Catal B: Environ, 1994, 3(2/3): 173-189.

    33. [33]

      [30] GAO X, JIANG Y, FU Y C, ZHONG Y, LUO Z Y, CEN K F. Preparation and characterization of CeO2/TiO2 catalysts for selective catalytic reduction of NO with NH3[J]. Catal Commun, 2010,11(5): 465-469.

    34. [34]

      [31] WAN Q, DUAN L, HE K B, LI J H. Removal of gaseous elemental mercury over a CeO2-WO3/TiO2 nanocomposite in simulated coal-fired flue gas[J]. Chem Eng J, 2011, 170(2/3): 512-517.

    35. [35]

      [32] KARAMI A, SALEHI V. The influence of chromium substitution on an iron-titanium catalyst used in the selective catalytic reduction of NO[J]. J Catal, 2012, 292: 32-43.

    36. [36]

      [33] CHEN Z H, WANG F R, LI H, YANG Q, WANG L F, LI X H. Low-temperature selective catalytic reduction of NOx with NH3 over Fe-Mn mixed-oxide catalysts containing Fe3Mn3O8 phase[J]. Ind Eng Chem Res, 2012, 51(1): 202-212.

    37. [37]

      [34] GAO R H, ZHANG D S, MAITARAD P, SHI L Y, RUNGROTMONGKOL T, LI H R, ZHANG J P, CAO W G. Morphology-dependent properties of MnOx/ZrO2-CeO2 nanostructures for the selective catalytic reduction of NO with NH3[J]. J Phys Chem C, 2013, 117(20): 10502-10511.

    38. [38]

      [35] YU D Q, LIU Y, WU Z B. Low-temperature catalytic oxidation of toluene over mesoporous MnOx-CeO2/TiO2 prepared by sol-gel method[J]. Catal Commun, 2010, 11(8): 788-791.

  • 加载中
    1. [1]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    2. [2]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    3. [3]

      Ziliang KANGJiamin ZHANGHong ANXiaohua LIUYang CHENJinping LILibo LI . Preparation and water adsorption properties of CaCl2@MOF-808 in-situ composite moulded particles. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2133-2140. doi: 10.11862/CJIC.20240282

    4. [4]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    5. [5]

      Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440

    6. [6]

      Pengyang FANShan FANQinjin DAIXiaoying ZHENGWei DONGMengxue WANGXiaoxiao HUANGYong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 675-682. doi: 10.11862/CJIC.20240339

    7. [7]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    8. [8]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    9. [9]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    10. [10]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

    11. [11]

      Xuewei BACheng CHENGHuaikang ZHANGDeqing ZHANGShuhua LI . Preparation and luminescent performance of Sr1-xZrSi2O7xDy3+ phosphor with high thermal stability. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 357-364. doi: 10.11862/CJIC.20240096

    12. [12]

      Yan ZHAOJiaxu WANGZhonghu LIChangli LIUXingsheng ZHAOHengwei ZHOUXiaokang JIANG . Gd3+-doped Sc2W3O12: Eu3+ red phosphor: Preparation and luminescence performance. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 461-468. doi: 10.11862/CJIC.20240316

    13. [13]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

    14. [14]

      Xueli Mu Lingli Han Tao Liu . Quantum Chemical Calculation Study on the E2 Elimination Reaction of Halohydrocarbon: Designing a Computational Chemistry Experiment. University Chemistry, 2025, 40(3): 68-75. doi: 10.12461/PKU.DXHX202404057

    15. [15]

      Zhongyan Cao Youzhi Xu Menghua Li Xiao Xiao Xianqiang Kong Deyun Qian . Electrochemically Driven Denitrative Borylation and Fluorosulfonylation of Nitroarenes. University Chemistry, 2025, 40(4): 277-281. doi: 10.12461/PKU.DXHX202407017

    16. [16]

      Dongdong Yao JunweiGu Yi Yan Junliang Zhang Yaping Zheng . Teaching Phase Separation Mechanism in Polymer Blends Using Process Representation Teaching Method: A Teaching Design for Challenging Theoretical Concepts in “Polymer Structure and Properties” Course. University Chemistry, 2025, 40(4): 131-137. doi: 10.12461/PKU.DXHX202408125

    17. [17]

      Shasha Ma Zujin Yang Jianyong Zhang . Facile Synthesis of FeBTC Metal-Organic Gel and Its Adsorption of Cr2O72−: A Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(8): 314-323. doi: 10.3866/PKU.DXHX202401008

    18. [18]

      Weikang Wang Yadong Wu Jianjun Zhang Kai Meng Jinhe Li Lele Wang Qinqin Liu . 三聚氰胺泡沫支撑的S型硫铟锌镉/硫掺杂氮化碳异质结的绿色H2O2合成:协同界面电荷转移调控与局域光热效应. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-. doi: 10.1016/j.actphy.2025.100093

    19. [19]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    20. [20]

      Yan ZHAOXiaokang JIANGZhonghui LIJiaxu WANGHengwei ZHOUHai GUO . Preparation and fluorescence properties of Eu3+-doped CaLaGaO4 red-emitting phosphors. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1861-1868. doi: 10.11862/CJIC.20240242

Metrics
  • PDF Downloads(0)
  • Abstract views(528)
  • HTML views(46)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return