Citation:
WANG Sen, CHEN Yan-yan, WEI Zhi-hong, QIN Zhang-feng, LI Jun-fen, DONG Mei, FAN Wei-bin, WANG Jian-guo. Recent research progresses in the effect of framework structure and acidity of zeolites on their catalytic performance in methanol to olefins (MTO)[J]. Journal of Fuel Chemistry and Technology,
;2015, 43(10): 1202-1214.
-
The conversion of methanol to olefins (MTO), as a non-petroleum route to get valuable chemicals from multifarious carbon resources such as coal, natural gas and biomass, has attracted extensive attentions in recent years. The catalytic performance of acidic zeolites used in MTO is closely related to their framework structure and acidic properties; a clear understanding on this relation is of benefits to the development of better zeolite catalysts and improvement of current processes for MTO. Therefore, in this paper, we attempt to make a review on the recent research progresses in the effect of framework structure and acidity of zeolites on their catalytic performance in MTO. The review was focused on the difference of various zeolites in the hydrocarbon pool species, reaction pathway and catalytic kinetics; especially, the relation between the framework structure and acidic properties of zeolites and their catalytic performance in MTO was expatiated.
-
-
-
[1]
[1] STOCKER M. Methanol-to-hydrocarbons: Catalytic materials and their behavior[J]. Microporous Mesoporous Mater, 1999, 29(1/2): 3-48.
-
[2]
[2] ASADULAH M, ITO S, KUNIMORI K, YAMADA M, TOMISHIGE K. Biomass gasification to hydrogen and syngas at low temperature: Novel catalytic system using fluidized-bed reactor[J]. J Catal, 2002, 208(2): 255-259.
-
[3]
[3] DAHL I M, KOLBOE S. On The reaction-mechanism for propene formation in the MTO reaction over SAPO-34[J]. Catal Lett, 1993, 20(3/4): 329-336.
-
[4]
[4] DAHL I M, KOLBOE S. On the reaction-mechanism for propene formation in the MTO reaction over SAPO-34.1. Isotopic labeling studies of the co-reaction of ethene and methanol[J]. J Catal, 1994, 149(2): 458-464.
-
[5]
[5] DAHL I M, KOLBOE S. On the reaction mechanism for hydrocarbon formation from methanol over SAPO-34.2. Isotopic labeling studies of the co-reaction of propene and methanol[J]. J Catal, 1996, 161(1): 304-309.
-
[6]
[6] SONG W G, HAW J F, NICHOLAS J B, HENEGHAN C S. Methylbenzenes are the organic reaction centers for methanol-to-olefin catalysis on HSAPO-34[J]. J Am Chem Soc, 2000, 122(43): 10726-10727.
-
[7]
[7] ARSTAD B, NICHOLAS J B, HAW J F. Theoretical study of the methylbenzene side-chain hydrocarbon pool mechanism in methanol to olefin catalysis[J]. J Am Chem Soc, 2004, 126(9): 2991-3001.
-
[8]
[8] MIKKELSEN O, RONNING P O, KOLBOE S. Use of isotopic labeling for mechanistic of the methanol-to-hydrocarbons reaction. Methylation of toluene with methanol over H-ZSM-5, H-mordenite and H-beta[J]. Microporous Mesoporous Mater, 2000, 40(1/3): 95-113.
-
[9]
[9] MOLE T, BETT G, SEDDON D. Conversion of methanol to hydrocarbons over ZSM-5 zeolite-an examination of the role of aromatic-hydrocarbons using carbon-13-labeled and deuterium-labeled feeds[J]. J Catal, 1983, 84(2): 435-445.
-
[10]
[10] MOLE T, WHITESIDE J A, SEDDON D. Aromatic Co-catalysis of methanol conversion over zeolite catalysis[J]. J Catal, 1983, 82(2): 261-266.
-
[11]
[11] SULLIVAN R F, SIEG R P, LANGLOIS G E, EGAN C J. A new reaction that occurs in hydrocracking of certain aromatic hydrocarbons[J]. J Am Chem Soc, 1961, 83(5): 1156-1160.
-
[12]
[12] XU T, HAW J F. Cyclopentenyl carbenium ion formation in acidic zeolite-An In-Situ NMR-study of cyclic precursors[J]. J Am Chem Soc, 1994, 116(17): 7753-7759.
-
[13]
[13] SASSI A, WILDMAN M A, AHN H J, PPASAD P, NICHOLAS J B, HAW J F. Methylbenzene chemistry on zeolite HBeta: Multiple insights into methanol-to-olefin catalysis[J]. J Phys Chem B, 2002, 106(9): 2294-2303.
-
[14]
[14] WANG C M, WANG Y D, LIU H X, XIE Z K, LIU Z P. Theoretical insight into the minor role of paring mechanism in the methanol-to-olefins conversion within HSAPO-34 catalyst[J]. Microporous Mesoporous Mater, 2012, 158(1): 264-271.
-
[15]
[15] DESSAU R M. On the H-ZSM-5 catalyzed formation of ethylene from methanol or higher olefins[J]. J Catal, 1986, 99(1): 111-116.
-
[16]
[16] SVELLE S, OLSBYE U, JOENSEN F, BJORGEN M. Conversion of methanol to alkenes over medium- and large-pore acidic zeolites: Steric manipulation of the reaction intermediates governs the ethene/propene product selectivity[J]. J Phys Chem C, 2007, 111(49): 17981-17984.
-
[17]
[17] WANG C M, WANG Y D, XIE Z K. Insights into the reaction mechanism of methanol-to-olefins conversion in HSAPO-34 from first principles: Are olefins themselves the dominating hydrocarbon pool species[J]? J Catal, 2013, 301: 8-19.
-
[18]
[18] HEMELSOET K, VAN DER MYNSBRUGGE J, DE WISPELAERE K, WAROQUIER M, VAN SPEYBROECK V. Unraveling the reaction mechanisms governing methanol-to-olefins catalysis by theory and experiment[J]. ChemPhysChem, 2013, 14(8): 1526-1545.
-
[19]
[19] OLSBYE U, SVELLE S, BJORGEN M, BEATO P, JANSSENS T V W, JOENSEN F, BORDIGA S, LILLERUD K P. Conversion of methanol to hydrocarbons: How zeolite cavity and pore size controls product selectivity[J]. Angew Chem Int Ed, 2012, 51(24): 5810-5831.
-
[20]
[20] LI L P, CUI X J, LI J F, WANG J G. Synthesis of SAPO-34/ZSM-5 composite and its catalytic performance in the conversion of methanol to hydrocarbons[J]. J Braz Chem Soc, 2015, 26(2): 290-296.
-
[21]
[21] NIU X J, GAO J, MIAO Q, DONG M, G.F. WANG G F, FAN W B,QIN Z F, WANG J G. Influence of preparation method on the performance of Zn-containing HZSM-5 catalysts in methanol-to-aromatics[J]. Microporous Mesoporous Mater, 2014, 197: 252-261.
-
[22]
[22] 耿蕊, 董梅, 王浩, 牛宪军, 樊卫斌, 王建国, 秦张峰. 十元环分子筛在甲醇芳构化反应中催化性能的研究[J]. 燃料化学学报, 2014, 42(9): 1119-1127. (GENG Rui, DONG Mei, WANG Hao, NIU Xian-jun, FAN Wei-bin, WANG Jian-guo, QIN Zhang-feng. An investigation on the catalytic performance of 10 MR zeolites in methanol aromatization reaction[J]. J Fuel Chem Technol, 2014, 42(9): 1119-1127.)
-
[23]
[23] 苗青, 董梅, 牛宪军, 王浩, 樊卫斌, 王建国, 秦张峰. 含镓ZSM-5分子筛的制备及其在甲醇芳构化反应中的催化性能[J], 燃料化学学报, 2012, 40(10): 1230-1239. (MIAO Qing, DONG Mei, NIU Xian-jun, WANG Hao, FAN Wei-bin, WANG Jian-guo, QIN Zhang-feng. Synthesis of gallium-containing ZSM-5 molecular sieves and their catalytic performance in methanol aromatization[J]. J Fuel Chem Technol, 2012, 40(10): 1230-1239.)
-
[24]
[24] LI J F, WEI Z H, CHEN Y Y, JING B Q, HE Y, DONG M, JIAO H J, LI X K, QIN Z F, WANG J G, FAN W B. A route to form initial hydrocarbon pool species in methanol conversion to olefins over zeolites[J]. J Catal, 2014, 317: 277-283.
-
[25]
[25] 卫智虹, 陈艳艳, 王森, 李俊汾, 董梅, 秦张峰, 王建国, 樊卫斌. 酸性分子筛上甲醇催化转化反应机理研究进展[J]. 燃料化学学报, 2013, 41(8): 897-910. (WEI Zhi-hong, CHEN Yan-yan, WANG Sen, LI Jun-fen, DONG Mei, QIN Zhang-feng, WANG Jian-guo, FAN Wei-bin. A review on the mechanism for the catalytic conversion of methanol over acid molecular sieves[J]. J Fuel Chem Technol, 2013, 41(8): 897-910.)
-
[26]
[26] 许烽, 董梅, 苟蔚勇, 黄立志, 李俊汾, 樊卫斌, 秦张峰, 王建国. ZSM-5分子筛的粒径可控合成及其在甲醇转化中的催化作用[J]. 燃料化学学报, 2012, 40(5): 576-582. (XU Feng, DONG Mei, GOU Wei-yong, HUANG Li-zhi, LI Jun-fen, FAN Wei-bin, QIN Zhang-feng, WANG Jian-guo. Size-controllable synthesis of ZSM-5 molecular sieves and their catalytic performance in the conversion of methanol to hydrocarbons[J]. J Fuel Chem Technol, 2012, 40(5): 576-582.)
-
[27]
[27] BJORGEN M, SVELLE S, JOENSEN F, NERLOV J, KOLBOE S, BONINO F, ALUMBO L, BORDIGA S, OLSBYE U. Conversion of methanol to hydrocarbons over zeolite H-ZSM-5: On the origin of the olefinic species[J]. J Catal, 2007, 249(2): 195-207.
-
[28]
[28] SVELLE S, JOENSEN F, NERLOV J, LILLERUD K P, KOLBOE S, BJORGEN M. Conversion of methanol into hydrocarbons over zeolite H-ZSM-5: Ethene formation is mechanistically separated from the formation of higher alkenes[J]. J Am Chem Soc, 2006, 128(46): 14770-14771.
-
[29]
[29] LESHAEGHE D, DE STERCK B, VAN SPEYBROECK V, MARIN G B, WAROQUIER M. Zeolite shape-selectivity in the gem-methylation of aromatic hydrocarbons[J]. Angew Chem Int Ed, 2007, 46(8): 1311-1314.
-
[30]
[30] BJORGEN M, OLSBYE U, PETERSEN D, KOLBOE S. The methanol-to-hydrocarbons reaction: insight into the reaction mechanism from [12C] benzene and [13C] methanol coreactions over zeolite H-beta[J]. J Catal, 2004, 221(1): 1-10.
-
[31]
[31] LI J Z, WEI Y X, CHEN J R, TIAN P, XU S T, QI Y,WANG Q Y, ZHOU Y, HE Y L, LIU Z M. Observation of heptamethylbenzenium cation over SAPO-Type molecular sieve DNL-6 under real mto conversion conditions[J]. J Am Chem Soc, 2012, 134(2): 836-839.
-
[32]
[32] BJORGEN M, JOENSEN F, LILLERUD K P, OLSBYE U, SVELLE S. The mechanisms of ethene and propene formation from methanol over high silica H-ZSM-5 and H-beta[J]. Catal Today, 2009, 142: 90-97.
-
[33]
[33] LESHAEGHE D, VAN DER MYNSBRUGGE J, VANDICHEL M, WAROQUIER M, VAN SPEYBROECK V. Full theoretical cycle for both ethene and propene formation during methanol-to-olefin conversion in H-ZSM-5[J]. ChemCatChem, 2011, 3(1): 208-212.
-
[34]
[34] TEKETEL S, OLSBYE U, LILLERUD K P, BEATO P, SVELLE S. Selectivity control through fundamental mechanistic insight in the conversion of methanol to hydrocarbons over zeolites[J]. Microporous Mesoporous Mater, 2010, 136(1/3): 33-41.
-
[35]
[35] LI J Z, WEI Y X, LIU G Y, QI Y, TIAN P, LI B, HE Y L, LIU Z M. Comparative study of MTO conversion over SAPO-34, H-ZSM-5 and H-ZSM-22: Correlating catalytic performance and reaction mechanism to zeolite topology[J]. Catal Today, 2011, 171(1): 221-228.
-
[36]
[36] LI J Z, WEI Y X, CHEN J R, TIAN P, XU S T, YANG X F, LI B, WANG J B, LIU Z. M. Cavity controls the selectivity: Insights of confinement effects on MTO reaction [J]. ACS Catal, 2015, 5(2): 661-665.
-
[37]
[37] WANG C M, WANG Y D, LIU H X, XIE Z K, LIU Z P. Methanol to olefin conversion on HSAPO-34 zeolite from periodic density functional theory calculations: A complete cycle of side chain hydrocarbon pool mechanism[J]. J Phys Chem C, 2009, 113(11): 4584-4591.
-
[38]
[38] WANG S, CHEN Y Y, WEI Z H, QIN Z F, CHEN J L, MA H, DONG M, LI, J F, FAN W B, WANG J G. Theoretical insights into the mechanism of olen elimination in the methanol-to-olen process over HZSM-5, HMOR, HBEA, and HMCM-22 zeolites[J]. J Phys Chem A, 2014, 118(39): 8901-8910.
-
[39]
[39] SHANG Y, YANG P P, JIA M J, ZHANG W X, WU T H. Modification of MCM-22 zeolites with silylation agents: Acid properties and catalytic performance for the skeletal isomerization of n-butene[J]. Catal Commun, 2008, 9(5): 907-912.
-
[40]
[40] WU P, KOMATSU T, YASHIMA T. Selective formation of p-xylene with disproportionation of toluene over MCM-22 catalysts[J]. Microporous Mesoporous Mater, 1998, 22(1/3): 343-356.
-
[41]
[41] ZHU Z R, CHEN Q L, ZHU W, KONG D J, LI C. Catalytic performance of MCM-22 zeolite for alkylation of toluene with methanol[J]. Catal Today, 2004, 93(1): 321-325.
-
[42]
[42] MERIAUDEAU P, TUAN V A, NGHIEM V T, LEFEVBRE F, HA V T. Characterization and catalytic properties of hydrothermally dealuminated MCM-22[J]. J Catal, 1999, 185(2): 378-385.
-
[43]
[43] MIN H K, PARK M B, HONG S B. Methanol-to-oleħn conversion over H-MCM-22 and H-ITQ-2 zeolites[J]. J Catal, 2010, 271(2): 186-194.
-
[44]
[44] WANG P F, HUANG L Z, LI J F, DONG M, WANG J G, TATSUMI T, FAN W B. Catalytic properties and deactivation behavior of H-MCM-22 in the conversion of methanol to hydrocarbons[J]. RSC Adv, 2015, 5(36): 28794-28802.
-
[45]
[45] LI Y, GUO W P, FAN W B, YUAN S P, J LI J F, WANG J G, JIAO H J, TATSUMI T. A DFT study on the distributions of Al and Brönsted acid sites in zeolite MCM-22[J]. J Mol Catal A: Chem, 2011, 338(1/2): 24-32.
-
[46]
[46] WANG S, WEI Z H, CHEN Y Y, QIN Z F, MA H, DONG M, FAN W B, WANG J G. Methanol to oleħns over H-MCM-22 zeolite: Theoretical study on the catalytic roles of various pores[J]. ACS Catal, 2015, 5(2): 1131-1144.
-
[47]
[47] VAN DER MYNSBRUGGE J, DE RIDDER J, HEMELSOET K, WAROQUIER M, VAN SPEYBROECK V. Enthalpy and entropy barriers explain the effects of topology on the kinetics of zeolite-catalyzed reactions[J]. Chem Eur J, 2013, 19(35): 11568-11576.
-
[48]
[48] VAN DER MYNSBRUGGE J, VISUR M, OLSBYE U BEATO P, BJORGEN M, VAN SPEYBROECK V, SVELLE S. Methylation of benzene by methanol: Single-site kinetics over H-ZSM-5 and H-beta zeolite catalysts[J]. J Catal, 2010, 292: 201-212.
-
[49]
[49] LI X, SUN Q M, WANG N, LU J R, YU J H. Confinement effect of zeolite cavities on methanol-to-oleħn conversion: A density functional theory study[J]. J Phys Chem, C, 2014, 118(43): 24935-24940.
-
[50]
[50] LIU H, PENG L M, XUE N H, GUO X F, DING W P YANG W M, XIE Z K. The effects of carbonaceous species in HZSM-5 on methanol-to-olefin process[J]. Appl Catal A, 2012, 421: 108-113.
-
[51]
[51] CHEN J R, LI J. Z, YUAN C Y, XU S T, WEI Y X, WANG Q, Y, ZHOU Y, WANG J B, ZHANG M Z, HE Y L, XU S L, LIU Z. M. Elucidating the olefin formation mechanism in the methanol to olefin reaction over AlPO-18 and SAPO-18[J]. Catal Sci Technol, 2014, 4(9): 3268-3277.
-
[52]
[52] SCHULZ H. "Coking" of zeolites during methanol conversion: Basic reactions of the MTO-, MTP- and MTG processes[J]. Catal Today, 2010, 154(3/4): 183-194.
-
[53]
[53] PALUMBO L, BONINO F, BEATO P, BJORGEN M, ZECCHINA A, BORDIGA S. Conversion of methanol to hydrocarbons: Spectroscopic characterization of carbonaceous species formed over H-ZSM-5[J]. J Phys Chem C, 2008, 112(26): 9710-9716.
-
[54]
[54] LEE K Y, KANG M Y, IHM S K. Deactivation by coke deposition on the HZSM-5 catalysts in the methanol-to-hydrocarbon conversion[J]. J Phys Chem Sol, 2012, 73(12): 1542-1545.
-
[55]
[55] ERICHSEN M W, SEVLLE S, OLSBYE U. H-SAPO-5 as methanol-to-olens (MTO) model catalyst: Towards elucidating the effects of acid strength[J]. J Catal, 2013, 298: 94-101.
-
[56]
[56] ERICHSEN M W, SEVLLE S, OLSBYE U. The influence of catalyst acid strength on the methanol to hydrocarbons (MTH) reaction[J]. Catal Today, 2013, 215: 216-223.
-
[57]
[57] ZHENG A M, LIU S B, DENG F. Chemoselectivity during propene hydrogenation reaction over H-ZSM-5 zeolite: Insights from theoretical calculations[J]. Microporous Mesoporous Mater, 2009, 121(1/3): 158-165.
-
[58]
[58] CHU Y Y, HAN B, FANG H J, ZHENG A M, DENG F. Influence of acid strength on the reactivity of alkane activation on solid acid catalysts: A theoretical calculation study[J]. Microporous Mesoporous Mater, 2012, 151: 241-249.
-
[59]
[59] WANG C M, BROGARRD R Y, WECKHUYSEN B M, NORSKOV J K, STUDT F. Reactivity descriptor in solid acid catalysis: Predicting turnover frequencies for propene methylation in zeotypes[J]. J Phys Chem Lett, 2014, 5(9): 1516-1521.
-
[60]
[60] MOSES P G, NORSKOV J K. Methanol to dimethyl ether over ZSM-22: A periodic density functional theory study[J]. ACS Catal, 2013, 3(4): 735-745.
-
[61]
[61] SASTRE S, FORNES V, CORMA A. On the Preferential location of Al and proton siting in zeolites: A computational and infrared study[J]. J Phys Chem B, 2002, 106(3): 701-708.
-
[62]
[62] SKLENAK S, DEDECEK J, LI C B, WICHTERLOVA B, GABOVA V, SIERKA M, SAUER J. Aluminum siting in silicon-rich zeolite frameworks: A combined high-resolution 27Al NMR spectroscopy and quantum mechanics/molecular mechanics study of ZSM-5[J]. Angew Chem Int Ed, 2007, 46(38): 7286-7289.
-
[63]
[63] DEDECEK J, BALGOVA V, PASHIKOVA V, KLEIN P, WICHTERLOVA B. Synthesis of ZSM-5 Zeolites with defined distribution of al atoms in the framework and multinuclear MAS NMR analysis of the control of Al distribution[J]. Chem Mater, 2012, 24(16): 3231-3239.
-
[64]
[64] VJUNOV A, FULTON J L, HUTHWELKER T, PIN S, MEI D H, SCHENTER G K, GOVIND N, CAMAIONI D M, HU J Z, LERCHER J A. Quantitatively probing the Al distribution in zeolites [J]. J Am Chem Soc, 2014, 136(23): 8296-8306.
-
[65]
[65] INAGAKI S, SHINODA S, KANEKO Y, TAKECHI K, KOMATSU R, YSUBOI Y, YAMAZAKI H, KONDO J N, KUBOTA Y. Facile fabrication of ZSM-5 zeolite catalyst with high durability to coke formation during catalytic cracking of paraffins[J]. ACS Catal, 2013, 3(1): 74-78.
-
[66]
[66] WEI F F, CUI Z M, MENG X J, CAO C Y, XIAO F S, SONG W G. Origin of the low olefin production over HZSM-22 and HZSM-23 zeolites: External acid sites and pore mouth catalysis[J]. ACS Catal, 2014, 4(2): 529-534.
-
[67]
[67] JANDA A, BELL A T. Effects of Si/Al ratio on the distribution of framework Al and on the rates of alkane monomolecular cracking and dehydrogenation in H-MFI[J]. J Am Chem Soc, 2013, 135(51): 19193-19207.
-
[68]
[68] PASHIKOVA V, KLEIN P, DEDECEK J, TOKAROVA V, WICHTERLOVA B. Incorporation of Al at ZSM-5 hydrothermal synthesis. Tuning of Al pairs in the framework [J]. Microporous Mesoporous Mater, 2015, 202: 138-146.
-
[1]
-
-
-
[1]
Pei Li , Yuenan Zheng , Zhankai Liu , An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012
-
[2]
Jiajie Li , Xiaocong Ma , Jufang Zheng , Qiang Wan , Xiaoshun Zhou , Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117
-
[3]
Ronghao Zhao , Yifan Liang , Mengyao Shi , Rongxiu Zhu , Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101
-
[4]
Wentao Lin , Wenfeng Wang , Yaofeng Yuan , Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095
-
[5]
Hongting Yan , Aili Feng , Rongxiu Zhu , Lei Liu , Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010
-
[6]
Aili Feng , Xin Lu , Peng Liu , Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072
-
[7]
Guowen Xing , Guangjian Liu , Le Chang . Five Types of Reactions of Carbonyl Oxonium Intermediates in University Organic Chemistry Teaching. University Chemistry, 2025, 40(4): 282-290. doi: 10.12461/PKU.DXHX202407058
-
[8]
Ling Fan , Meili Pang , Yeyun Zhang , Yanmei Wang , Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024
-
[9]
Jiabo Huang , Quanxin Li , Zhongyan Cao , Li Dang , Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172
-
[10]
Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210
-
[11]
Weina Wang , Lixia Feng , Fengyi Liu , Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022
-
[12]
Xingyang LI , Tianju LIU , Yang GAO , Dandan ZHANG , Yong ZHOU , Meng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026
-
[13]
Qian Huang , Zhaowei Li , Jianing Zhao , Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018
-
[14]
Yong Wang , Yingying Zhao , Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009
-
[15]
Mingyang Men , Jinghua Wu , Gaozhan Liu , Jing Zhang , Nini Zhang , Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019
-
[16]
Zihan Lin , Wanzhen Lin , Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089
-
[17]
Jiaxun Wu , Mingde Li , Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098
-
[18]
Yingchun ZHANG , Yiwei SHI , Ruijie YANG , Xin WANG , Zhiguo SONG , Min WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078
-
[19]
Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047
-
[20]
Chuanming GUO , Kaiyang ZHANG , Yun WU , Rui YAO , Qiang ZHAO , Jinping LI , Guang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459
-
[1]
Metrics
- PDF Downloads(1)
- Abstract views(807)
- HTML views(104)