Citation:
WANG Hong-ming, MIAO Rong-rong, YANG Yong, QIAO Yu-hui, ZHANG Qiong-fang, LI Chun-sheng, HUANG Jiang-ping. Study on the catalytic gasification of alkali lignin over Ru/C nanotubes in supercritical water[J]. Journal of Fuel Chemistry and Technology,
;2015, 43(10): 1195-1201.
-
Aiming at the refractory characteristics of alkali lignin, the study on the gasification of alkali lignin in supercritical water was carried out in a batch reactor with Ru/C nanotubes as the catalyst. The effect of temperature, water density, time, concentration of the reactant, catalyst amount on the gasification of alkali lignin was discussed, as well as the catalytic efficiency of the Ru/C catalyst nanotubes. The optimum conditions of the catalytic gasification of alkali lignin on the Ru/C nanotubes obtained with single factor analysis were the reaction temperature of 600 ℃, 0.128 4 g/cm3 water density, 60 min reaction time, 3.0% reactant concentration, catalyst amount of 0.5 g/g (alkali lignin). The results show that during the gasification process of alkali lignin in supercritical water, the high temperature, high water density (or pressure), long reaction time, low reactant concentration and right amount of catalyst will be in favor of the gasification reaction. The alkali lignin gasification efficiency and carbon gasification efficiency reached 73.74% and 56.34% under the optimal reaction conditions, and the hydrogen production capacity was also significantly improved.
-
-
-
[1]
[1] YANG H P, YAN R, CHEN H P, LEE D H, ZHENG C. Characteristics of hemicellulose, cellulose and lignin pyrolysis[J]. Fuel, 2007, 86(12): 1781-1788.
-
[2]
[2] GUO Y, WANG S Z, XU D H, GONG Y M, MA H H, TANG X Y. Review of catalytic supercritical water gasification for hydrogen production from biomass[J]. Renew Sust Energy Rev, 2010, 14(1): 334-343.
-
[3]
[3] SUI X J, WU S B. Study on mechanism of action of catalysts on liquefaction of bagasse alkali lignin[J]. Adv Mater Res, 2011, 383-390: 6145-6150.
-
[4]
[4] RESENDE F, SAVAGE P E. Expanded and updated results for supercritical water gasification of cellulose and lignin in metal-free reactors[J]. Energy Fuels, 2009, 23(12): 6213-6221.
-
[5]
[5] YAMAGUCHI A, HIVOSHI N, SATO O, OSADA M, SHIRAI M. Lignin gasification over supported ruthenium trivalent salts in supercritical water[J]. Energy Fuels, 2008, 22(3): 1485-1492.
-
[6]
[6] ANTAL JR M J, ALLEN S G, SCHULMAN D, XU X D. Biomass gasification in supercritical water. Ind Eng Chem Res, 2000, 39(11): 4040-4053.
-
[7]
[7] MINOWA T, ZHEN F, OGI T. Cellulose decomposition in hot-compressed water with alkali or nickel catalyst[J]. J Supercrit Fluid, 1998, 13: 253-259.
-
[8]
[8] YOSHIDA T, OSHIMA Y, MATSUMURA Y. Gasification of biomass model compounds and real biomass in supercritical water[J]. Biomass Bioenergy, 2004, 26(1): 71-78.
-
[9]
[9] HAO X H, GUO L J, MAO X, ZHANG X M, CHEN X J. Hydrogen production from glucose used as a model compound of biomass gasified in supercritical water[J]. Hydrogen Energy, 2003, 28: 55-64.
-
[10]
[10] LU Y, JI C M, GUO L J. Experimental investigation on hydrogen production by agricultural biomass gasification in supercritical water[J]. J Xi'an Jiaotong Univ, 2005, 39(3): 238-242.
-
[11]
[11] GUAN Q Q, WEI C H, SHI H. Partial oxidative gasification of phenol for hydrogen in supercritical water[J]. Appl Energy, 2011, 88(8): 2612-2616.
-
[12]
[12] MITSUMASA OS M, O S, KUNIO A, MASAYUKI S. Stability of supported ruthenium catalysts for lignin gasification in supercritical water[J]. Energy Fuels, 2006, 20(6): 2337-2343.
-
[13]
[13] ELLIOTT D C, SEALOEK JR L J, BAKER E G. Chemical processing in high pressure aqueous environments: 2.Development of catalysts for gasification[J]. Ind Eng Chem Res, 1993, 32(8): 1542-1548.
-
[14]
[14] RABE S, NACHTEGAAL M, ULRICH T. Towards understanding the catalytic reforming of biomass in supercritical water[J]. Angew Chemie, 2010, 49(36): 6434-6437.
-
[15]
[15] RESENDE F L P, FRALEY S A, BERGER M J. Noncatalytic gasification of lignin in supercritical water[J]. Energy Fuels, 2008, 22(2): 1328-1334.
-
[16]
[16] YOSHIDA T, OSHIMA T, MATSUMURA Y. Partial oxidative and catalytic biomass gasification in supercritical water: A promising flow reactor system[J]. Ind Eng Chem Res, 2004, 43(15): 4097-4104.
-
[17]
[17] STUCKI S, VOGEL F, LUDWIG C. Catalytic gasification of algae in supercritical water for biofuel production and carbon capture[J]. Energy Environ Sci, 2009, 2(5): 535-541.
-
[18]
[18] BRUNNER G. Near critical and supercritical water. Part I. Hydrolytic and hydrothermal[J]. J Supercrit Fluid, 2009, 47: 373-381.
-
[19]
[19] BERMEJO M D, COCERO M J. Supercritical water oxidation: A technical review[J]. Aiche J, 2006, 52(11):3933-3951.
-
[20]
[20] KRUSE A, DINJUS E. Hot compressed water as reaction medium and reactant: Properties and synthesis reactions[J]. J Supercrit Fluid, 2007, 39(3): 362-380.
-
[21]
[21] LUNDQUIST K, ERICSSON L. Low-molecular weight lignin hydrolysis products[C]. Appl Polymer Symp, 1976, 28: 1393-1407.
-
[22]
[22] ANTAL M J, MATSUMURA Y, XU X. Catalytic gasification of wet biomass in supercritical water[J]. Prepr Pap-Am Chem Soc, Div Fuel Chem, 1995, 40(2): 304-407.
-
[23]
[23] 毛肖岸, 郝小红, 张西民, 郭烈锦. 超临界水中葡萄糖气化制氢实验研究[J]. 化学工程, 2004, 32(5): 25-28. (MAO Xiao-an, HAO Xiao-hong, ZHANG Xi-min, GUO Lie-jin. Experimental study of hydrogen production from glucose gasification in supercritical water[J]. Chem Eng J, 2004, 32(5): 25-28.)
-
[1]
-
-
-
[1]
Xinghai Li , Zhisen Wu , Lijing Zhang , Shengyang Tao . Machine Learning Enables the Prediction of Amide Bond Synthesis Based on Small Datasets. Acta Physico-Chimica Sinica, 2025, 41(2): 100010-. doi: 10.3866/PKU.WHXB202309041
-
[2]
Hong Wu , Yuxi Wang , Hongyan Feng , Xiaokui Wang , Bangkun Jin , Xuan Lei , Qianghua Wu , Hongchun Li . Application of Computational Chemistry in the Determination of Magnetic Susceptibility of Metal Complexes. University Chemistry, 2025, 40(3): 116-123. doi: 10.12461/PKU.DXHX202405141
-
[3]
Zunxiang Zeng , Yuling Hu , Yufei Hu , Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069
-
[4]
Ji-Quan Liu , Huilin Guo , Ying Yang , Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031
-
[5]
Guojie Xu , Fang Yu , Yunxia Wang , Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060
-
[6]
Pengzi Wang , Wenjing Xiao , Jiarong Chen . Copper-Catalyzed C―O Bond Formation by Kharasch-Sosnovsky-Type Reaction. University Chemistry, 2025, 40(4): 239-244. doi: 10.12461/PKU.DXHX202406090
-
[7]
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
-
[8]
Chuanming GUO , Kaiyang ZHANG , Yun WU , Rui YAO , Qiang ZHAO , Jinping LI , Guang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459
-
[9]
Yueguang Chen , Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074
-
[10]
Yuena Yang , Xufang Hu , Yushan Liu , Yaya Kuang , Jian Ling , Qiue Cao , Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125
-
[11]
Lei Shu , Zimin Duan , Yushen Kang , Zijian Zhao , Hong Wang , Lihua Zhu , Hui Xiong , Nan Wang . An Exploration of the CO2-Involved Carbon Cycle World. University Chemistry, 2024, 39(5): 144-153. doi: 10.3866/PKU.DXHX202309084
-
[12]
Wentao Lin , Wenfeng Wang , Yaofeng Yuan , Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095
-
[13]
Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047
-
[14]
Yuting Zhang , Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037
-
[15]
Ruitong Zhang , Zhiqiang Zeng , Xiaoguang Zhang . Improvement of Ethyl Acetate Saponification Reaction and Iodine Clock Reaction Experiments. University Chemistry, 2024, 39(8): 197-203. doi: 10.3866/PKU.DXHX202312004
-
[16]
Yuan Chun , Lijun Yang , Jinyue Yang , Wei Gao . Ideological and Political Design of BZ Oscillatory Reaction Experiment. University Chemistry, 2024, 39(2): 72-76. doi: 10.3866/PKU.DXHX202308072
-
[17]
Shiyan Cheng , Yonghong Ruan , Lei Gong , Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024
-
[18]
Lei Shu , Zhengqing Hao , Kai Yan , Hong Wang , Lihua Zhu , Fang Chen , Nan Wang . Development of a Double-Carbon Related Experiment: Preparation, Characterization and Carbon-Capture Ability of Eggshell-Derived CaO. University Chemistry, 2024, 39(4): 149-156. doi: 10.3866/PKU.DXHX202310134
-
[19]
Wenli FENG , Lu ZHAO , Yunfeng BAI , Feng FENG . Research progress on ultralong room temperature phosphorescent carbon dots. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 833-846. doi: 10.11862/CJIC.20240308
-
[20]
Weina Wang , Lixia Feng , Fengyi Liu , Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(367)
- HTML views(20)