Citation: GUO Pei, ZHAO Hui-ming, JIA Ting-hao, WANG Mei-jun, CHANG Li-ping. Effect of co-pyrolysis process on the oxidation reactivity of lignite char and biomass char[J]. Journal of Fuel Chemistry and Technology, ;2015, 43(10): 1188-1194. shu

Effect of co-pyrolysis process on the oxidation reactivity of lignite char and biomass char

  • Corresponding author: CHANG Li-ping, 
  • Received Date: 11 February 2015
    Available Online: 20 May 2015

    Fund Project: 国家自然科学基金项目(21176165,U1261110) (21176165,U1261110)国家自然科学青年基金项目(21406152) (21406152)山西省省回国留学基金项目(2014-028) (2014-028)太原理工大学引进人才基金项目(tyut-rc201366a) (tyut-rc201366a)太原理工大学青年基金(2013Z024)资助项目 (2013Z024)

  • Ximeng lignite and cornstalk were used as the feedstock to prepare lignite char, biomass char and co-pyrolysis char with different blending ratios in a fixed bed reactor with temperature-programmed pyrolysis. The pore and chemical structure of char samples were characterized and the ash composition was analyzed. The oxidation reactivity of the mixtures of lignite char/cornstalk char with different blending ratios and the co-pyrolysis char of lignite and cornstalk with corresponding blending ratios were investigated by the isothermal thermogravimetry at 450 ℃, aimed at the effect of co-pyrolysis process on the char reactivity. The results show that there are obvious influences on the char structures through secondary reactions during co-pyrolysis process, leading to the char reactivity decrease. Especially with the cornstalk proportion less than 50%, these influences are more significant due to a large number of volatiles from cornstalk during co-pyrolysis enhancing the secondary reactions between the volatile and nascent char, prompting parts of organic structure less than 5 rings turn into the larger organic structure. For the char samples with cornstalk proportion above 50%, the catalytic effect of alkaline and alkaline earth metal in biomass char plays a dominating role, especially the effect of potassium, resulting in the weaker effects of secondary reactions on the structure and oxidation reactivity of the char samples.
  • 加载中
    1. [1]

      [1] PRABIR B. Biomass gasification and pyrolysis[M]. Beijing: Science Press, 2011.

    2. [2]

      [2] COLLOT A G, ZHOU Y, DUGWELL D R, KANDIYOTI R. Co-pyrolysis and co-gasification of coal biomass in bench-scale fixed-bed and fluidised bed reactors[J]. Fuel, 1999, 78(6): 667-679.

    3. [3]

      [3] ZHU W K, SONG W L, LIN W G. Catalytic gasification of char from co-pyrolysis of coal and biomass[J]. Fuel Process Technol, 2008, 89(9): 890-896.

    4. [4]

      [4] 李克忠, 张荣, 毕继诚. 煤和生物质共气化协同效应的初步研究[J]. 化学反应工程与工艺, 2008, 24(4): 312-317. (LI Ke-zhong, ZHANG Rong, BI Ji-cheng. Study on synergistic effect in co-gasification of coal and biomass[J].Chem React Eng Technol, 2008, 24(4): 312-317.)

    5. [5]

      [5] 王健, 张守玉, 郭熙, 董爱霞, 陈川, 熊绍武, 房倚天. 平朔煤和生物质共热解实验研究[J]. 燃料化学学报, 2013, 41(1): 67-73. (WANG Jian, ZHANG Shou-yu, GUO Xi, DONG Ai-xia, CHEN Chuan, XIONG Shao-wu, FANG Yi-tian. Co-pyrolysis of Pingshuo coal and biomass[J]. J Fuel Chem Technol, 2013, 41(1): 67-73.)

    6. [6]

      [6] 任海君, 张永奇, 房倚天, 王洋. 煤焦与生物质焦共气化反应特性研究[J]. 燃料化学学报, 2012, 40(2): 143-148. (REN Hai-jun, ZHANG Yong-qi, FANG Yi-tian, WANG Yang. Co-gasification properties of coal char and biomass char[J]. J Fuel Chem Technol, 2012, 40(2): 143-148.)

    7. [7]

      [7] WEI L G, ZHANG L, XU S P. Effects of feedstock on co-pyrolysis of biomass and coal in a free fall reactor[J]. J Fuel Chem Technol, 2011, 39(10): 728-734.

    8. [8]

      [8] 车德勇, 韩宁宁, 李少华, 刘辉. 水蒸气对生物质和煤流化床共气化的影响模拟[J]. 中国电机工程学报, 2013, 33(32): 1-6. (CHE De-yong, HAN Ning-ning, LI Shao-hua, LIU Hui. Simulation study on influence of steam on co-gasification of biomass and coal in a fluidized bed[J]. Proc Chin Soc Electr Eng, 2013, 33(32): 1-6.)

    9. [9]

      [9] LEILA E T, MUHAMMAD F I, WAN M A W D, MOHAMMED H C. Fuel blending effects on the co-gasification of coal and biomass-A review[J]. Biomass Bioenergy, 2013, 57: 249-263.

    10. [10]

      [10] 魏立纲, 张丽, 徐绍平. 自由落下床中生物质与煤共热解的协同效应对焦油组成的影响[J]. 燃料化学学报, 2012, 40(5): 519-525. (WEI Li-gang, ZHANG Li, YU Shao-ping. Effect of synergism between biomass and coal during co-pyrolysis in a free fall reactor on tar components[J]. J Fuel Chem Technol, 2012, 40(5): 519-525.)

    11. [11]

      [11] LI W Q, WANG L Y, QIAO Y, LIN J Y, WANG M J, CHANG L P. Effect of atmosphere on the release behavior of alkali and alkaline earth metals during coal oxy-fuel combustion[J]. Fuel, 2015, 139: 164-170.

    12. [12]

      [12] 朱文魁, 宋文立, 林伟刚. 煤-富钾生物质共转化催化煤焦气化反应的研究[J]. 中国矿业大学学报, 2011, 40(4): 616-621. (ZHU Wen-kui, SONG Wen-li, LIN Wei-gang. Study of catalytic gasification of co-pyrolysis char erived from coal and K-riched biomass[J]. J China Univ Min Technol, 2011, 40(4): 616-621.)

    13. [13]

      [13] MITSUOKA K, HAYASHI S, AMANO H, KAYAHARA K, SASAOAKA E, UDDIN M A. Gasification of woody biomass char with CO2: The catalytic effects of K and Ca species on char gasification reactivity[J]. Fuel Process Technol, 2011, 92(1): 26-31.

    14. [14]

      [14] LAHIJANI P, ZAINAL Z A, MOHAMED A R, MOHAMMADI M. CO2 gasification reactivity of biomass char: catalytic influence of alkali, alkaline earth and transition metal salts[J]. Bioresour Technol, 2013, 144: 288-295.

    15. [15]

      [15] DING L, ZHANG Y Q, WANG Z Q, HUANG J J, FANG Y T. Interaction and its induced inhibiting or synergistic effects during co-gasification of coal char and biomass char[J]. Bioresour Technol, 2014, 173: 11-20.

    16. [16]

      [16] LI X J, HAYASHI J I, LI C Z. FT-Raman spectroscopic study of the evolution of char structure during the pyrolysis of a Victorian brown coal[J]. Fuel, 2006, 85(12/13): 1700-1707.

    17. [17]

      [17] MOGHATADERI B, MEESRI C, WALL T F. Pyrolytic characteristics of blended coal and wood biomass[J]. Fuel, 2004, 83: 745-750.

    18. [18]

      [18] SONCINI R M, MEANS N C, WEILAND N T. Co-pyrolysis of low rank coals and biomass: Product distributions[J]. Fuel, 2013, 112: 74-82.

    19. [19]

      [19] EOM I Y, KIM J Y, KIM T S, LEE S M, CHOI D, CHOI I G, CHOI J W. Effect of essential inorganic metals on primary thermal degradation of lignocellosic biomass[J]. Bioresour Technol, 2012, 104: 687-694.

    20. [20]

      [20] LI C Z. Some recent advances in the understanding of the pyrolysis and gasification behavior of Victorian brown coal[J]. Fuel, 2007, 86(12/13): 1664-1683.

  • 加载中
    1. [1]

      Kuaibing Wang Feifei Mao Weihua Zhang Bo Lv . Design and Practice of a Comprehensive Teaching Experiment for Preparing Biomass Carbon Dots from Rice Husk. University Chemistry, 2025, 40(5): 342-350. doi: 10.12461/PKU.DXHX202407042

    2. [2]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    3. [3]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    4. [4]

      Yadan Luo Hao Zheng Xin Li Fengmin Li Hua Tang Xilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-. doi: 10.1016/j.actphy.2025.100052

    5. [5]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    6. [6]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    7. [7]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    8. [8]

      Rong Tian Yadi Yang Naihao Lu . Comprehensive Experimental Design of Undergraduate Students Based on Interdisciplinarity: Study on the Effect of Quercetin on Chlorination Activity of Myeloperoxidase. University Chemistry, 2024, 39(8): 247-254. doi: 10.3866/PKU.DXHX202312064

    9. [9]

      Yuhang Jiang Weijie Liu Jiaqi Cai Jiayue Chen Yanping Ren Pingping Wu Liulin Yang . A Journey into the Science and Art of Sugar: “Dispersion of Light and Optical Rotation of Matter” Science Popularization Experiment. University Chemistry, 2024, 39(9): 288-294. doi: 10.12461/PKU.DXHX202401054

    10. [10]

      Qingyang Cui Feng Yu Zirun Wang Bangkun Jin Wanqun Hu Wan Li . From Jelly to Soft Matter: Preparation and Properties-Exploring of Different Kinds of Hydrogels. University Chemistry, 2024, 39(9): 338-348. doi: 10.3866/PKU.DXHX202309046

    11. [11]

      Zhifang SUZongjie GUANYu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290

    12. [12]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(12): 0-0.

    13. [13]

      Quanliang Chen Zhaohui Zhou . Research on the Active Site of Nitrogenase over Fifty Years. University Chemistry, 2024, 39(7): 287-293. doi: 10.3866/PKU.DXHX202310133

    14. [14]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    15. [15]

      Shipeng WANGShangyu XIELuxian LIANGXuehong WANGJie WEIDeqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094

    16. [16]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    17. [17]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    18. [18]

      Zhibei Qu Changxin Wang Lei Li Jiaze Li Jun Zhang . Organoid-on-a-Chip for Drug Screening and the Inherent Biochemistry Principles. University Chemistry, 2024, 39(7): 278-286. doi: 10.3866/PKU.DXHX202311039

    19. [19]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    20. [20]

      Yang Liu Peng Chen Lei Liu . Chemistry “101 Plan”: Design and Construction of Chemical Biology Textbook. University Chemistry, 2024, 39(10): 45-51. doi: 10.12461/PKU.DXHX202407085

Metrics
  • PDF Downloads(0)
  • Abstract views(373)
  • HTML views(14)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return