Citation:
WANG Qing, XU Xiang-cheng, CHI Ming-shu, ZHANG Hong-xi, CUI Da, BAI Jing-ru. FT-IR study on composition of oil shale kerogen and its pyrolysis oil generation characteristics[J]. Journal of Fuel Chemistry and Technology,
;2015, 43(10): 1158-1166.
-
Five oil shale kerogens from different regions were analyzed by KBr-FTIR spectra, and a quantitative determination method of structural parameters of kerogen aliphatic hydrocarbon was established by peak-fitting analysis. Thermogravimetric (TG) and Fourier transform infrared spectroscopy (FT-IR) analysis was used to online analyze devolatilization components of kerogen pyrolyzed at 20 ℃/min. The reactivity characteristic and variation of structural parameters of aliphatic hydrocarbon with pyrolysis time were obtained. The results show that the oil shale kerogen was composed of aliphatic hydrocarbon, aromatic hydrocarbon and oxygen functional groups. The relative content of aliphatic hydrocarbon structure, mainly long chain methylene, reaches 18.5%~78.2%. With increasing degree of kerogen evolution, the content of aliphatic hydrocarbon and capacity of oil generation decrease. The decomposition of kerogen mainly occurs during 350~520 ℃. The thermal weightless is mild when above 520 ℃ at which mass fraction of the residual char is 19.5%~52.2%. FT-IR analysis shows that free water releases out firstly during pyrolysis, subsequently depolymerization and dehydration reactions occur, and in which main side chains of alkane fall off and cyclization and oxygen-containing groups break into various of hydrocarbons, acids, alcohols, aldehydes, etc. until more stable graphite-like structure is formed.
-
-
-
[1]
[1] 马玲, 尹秀英, 孙昊, 付宝山. 世界油页岩资源开发利用现状与发展前景[J]. 世界地质, 2012, 31(4): 772-777. (MA Lin, YIN Xiu-yin, SUN Hao, FU Bao-shan. Present status of oil shale resource utilization in the world and its development prospects. Glob Geol, 2012, 31(4): 772-777.)
-
[2]
[2] MARSHALL C P, LOVE G D, SNAPE C E, HILL A C, ALLWOOD A C, WALTER M R, KRANENDONK M J V, BOWDEN S A, SYLÜA S P, SUMMONS R E. Structural characterization of kerogen in 3.4 Ga Archaean cherts from the Pilbara Craton, Western Australia[J]. Prec Res, 2007, 155: 1-23.
-
[3]
[3] RU X, CHENG Z Q, SONG L H, WANG H Y, LI J F. Experimental and computational studies on the average molecular structure of Chinese Huadian oil shale kerogen[J]. J Mol Str, 2012, 1030: 10-18.
-
[4]
[4] 马骁轩, 冉勇. 茂名油页岩中干酪根的热模拟地球化学演变及表征[J]. 地球化学, 2013, 42(4): 373-378. (MA Xiao-xuan, RAN Yong. Simulation and characterization of thermal evolution of kerogen in Maoming oil shale[J]. Geochem, 2013, 42(4): 373-378.)
-
[5]
[5] 张学军, 严晓虎, 李佩珍, 苗得玉, 胡文, 刘庆. 干酪根中类脂肪链含量的测定及石油地质意义[J]. 沉积学报, 2004, 22(4): 711-717. (ZHANG Xue-jun, YAN Xiao-hu, LI Pei-zhen, MIAO De-yu, HU Wen, LIU Qing. The method of determination of aliphatic content in kerogen by quantitative FT-IR and its petroleum geology significance[J]. Acta Sed Sin, 2004, 22(4): 711-717.)
-
[6]
[6] 王擎, 闫宇赫, 贾春霞, 朱玉成. 甘肃油页岩红外光谱分析及热解特性[J]. 化工进展, 2014, 33(7): 1730-1734. (WANG Qing, YAN Yu-he, JIA Chun-xia, ZHU Yu-cheng. FT-IR analysis and pyrolysis characteristics of oil shale from Gansu province[J]. Chem Ind Eng Prog, 2014, 33(7): 1730-1734.)
-
[7]
[7] WANG S Q, TANG Y G, SCHOBERT H H, GUO Y N, GAO W C, LU X K. FT-IR and simultaneous TG/MS/FT-IR study of Late Permian coals from Southern China[J]. J Anal Appl Pyrolysis, 2013, 100: 75-80.
-
[8]
[8] 谢芳芳, 王泽, 宋文立, 林伟刚. 吉林桦甸油页岩及热解产物的红外光谱分析[J]. 光谱学与光谱分析, 2011, 31(1): 91-94. (XIE Fang-fang, WANG Ze, SONG Wen-li, LIN Wei-gang. FT-IR analysis of oil shales from huadian Jilin and their pyrolysates[J]. Spectrosc Spect Anal, 2011, 31(1): 91-94.)
-
[9]
[9] TONG J H, HAN X X, WANG S, JIANG X M. Evaluation of structural characteristics of Huadian oil shale kerogen using direct techniques (Solid-State 13C NMR, XPS, FT-IR and XRD)[J]. Energy Fuels, 2011, 25(9): 4006-4013.
-
[10]
[10] 薛向欣, 刘艳辉, 李勇, 姜亚洲. 红外光谱法研究油页岩及干酪根的生油能力[J]. 东北大学学报(自然科学版), 2010, 31(9): 1292-1295. (XUE Xiang-xin, LIU Yan-hui, LI Yong, JIANG Ya-zhou. Study on oil producibility from oil shale and kerogen by Infrared Spectra[J]. J Northeast Univ(NatSci), 2010, 31(9): 1292-1295.)
-
[11]
[11] MIKNIS F P, LINDNER A W, GANNON A J. Solid state 13C-NMR studies of selected oil shales from Queensland, Australia[J]. Org Geochem, 1984, 7(3): 239-248.
-
[12]
[12] 汪瑗, 阿里木江·艾拜都拉. 波谱综合解析指导[M]. 北京: 化学工业出版社, 2008: 24-25. (WANG Yuan, ALIMJAN ABAYDULLA. Comprehensive analysis of spectrum guide[M]. Beijing: Chemical Industry Press, 2008: 24-25.)
-
[13]
[13] 傅家谟, 秦匡宗. 干酪根地球化学[M]. 广州: 广东科技出版社, 1995: 135-170. (FU Jia-mo, QIN Kuang-zong. Kerogen geochemistry[M]. Guangzhou: Guangdong Science and Technology Press, 1995: 135-170.)
-
[14]
[14] 冯杰, 李文英, 谢克昌. 傅立叶红外光谱法对煤结构的研究[J]. 中国矿业大学学报, 2002, 31(5): 362-366. (FENG Jie, LI Wen-ying, XIE Ke-chang. Research on coal structure using FT-IR[J]. J ChIn Univ Min Technol, 2002, 31(5): 362-366.)
-
[15]
[15] SOLOMON P R, BEST P E, YU Z Z. A macromolecular network model for coal fluidity[J]. ACS Div Fuel Chem Prepr, 1989, 34(3): 895-906.
-
[16]
[16] FRIEDEL R A, ORCHIN M. Ultraviolet spectra of aromatic compounds[A]. Applied Infrared Spectroscopy[C]. New York: C D N Kendall, 1966: 256-270.
-
[17]
[17] KRISTIN N A, DINESH R K, KALPANA S K. An in situ FT-IR step-scan photoacoustic investigation of kerogen and minerals in oil shale[J]. Spectroch Acta Part A, 2012, 89(4): 105-113.
-
[18]
[18] 梁虎珍, 王传格, 曾凡桂, 李美芬, 相建华. 应用红外光谱研究脱灰对伊敏褐煤结构的影响[J]. 燃料化学学报, 2014, 42(2): 129-137. (LIANG Hu-zhen, WANG Chuan-ge, ZENG Fan-gui, LI Mei-fen, XIANG Jian-hua. Effect of demineralization on lignite structure from Yinmin coalfield by FT-IR investigation[J]. J Fuel Chem Technol, 2014, 42(2): 129-137.)
-
[19]
[19] 王传格, 张妮, 陈燕. 煤显微组分结构特征及其与热解行为的关系[J]. 煤炭转化, 2011, 34(3): 11-16. (WANG Chuan-ge, ZHANG Ni, CHEN Yan. Relationship between structural characterization of macerals and their thermal behavior[J]. Coal Convers, 2011, 34(3): 11-16.)
-
[20]
[20] WANG H, JIANG X M, YUAN D Q, WAN P. Pyrolysis of coal water slurry volatile matter by using FG-DVC model[J]. J Chem Ind Eng (CHN), 2006, 57(10): 2428-2432.
-
[1]
-
-
-
[1]
Supin Zhao , Jing Xie . Understanding the Vibrational Stark Effect of Water Molecules Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 178-185. doi: 10.12461/PKU.DXHX202406024
-
[2]
Yang Wang , Yunpeng Fu , Xiaoji Liu , Guotao Zhang , Guobin Li , Wanqiang Liu , Jinglun Wang . Structural Analysis of Nitrile Solutions Based on Infrared Spectroscopy Probes. University Chemistry, 2025, 40(4): 367-374. doi: 10.12461/PKU.DXHX202406113
-
[3]
Yahui HAN , Jinjin ZHAO , Ning REN , Jianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395
-
[4]
Yi Li , Zhaoxiang Cao , Peng Liu , Xia Wu , Dongju Zhang . Revealing the Coloration and Color Change Mechanisms of the Eriochrome Black T Indicator through Computational Chemistry and UV-Visible Absorption Spectroscopy. University Chemistry, 2025, 40(3): 132-139. doi: 10.12461/PKU.DXHX202405154
-
[5]
Baitong Wei , Jinxin Guo , Xigong Liu , Rongxiu Zhu , Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003
-
[6]
Jiajie Li , Xiaocong Ma , Jufang Zheng , Qiang Wan , Xiaoshun Zhou , Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117
-
[7]
Daojuan Cheng , Fang Fang . Exploration and Implementation of Science-Education Integration in Organic Chemistry Teaching for Pharmacy Majors: A Case Study on Nucleophilic Substitution Reactions of Alkyl Halides. University Chemistry, 2024, 39(11): 72-78. doi: 10.12461/PKU.DXHX202403105
-
[8]
Yang Lv , Yingping Jia , Yanhua Li , Hexiang Zhong , Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059
-
[9]
Yan Liu , Yuexiang Zhu , Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084
-
[10]
Yingchun ZHANG , Yiwei SHI , Ruijie YANG , Xin WANG , Zhiguo SONG , Min WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078
-
[11]
Wen Shi , Zhangwen Wei , Mei Pan , Chengyong Su . Explorations on the Course Construction of Structural Chemistry Practice and Application Targeting the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 96-100. doi: 10.12461/PKU.DXHX202409036
-
[12]
Liang MA , Honghua ZHANG , Weilu ZHENG , Aoqi YOU , Zhiyong OUYANG , Junjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075
-
[13]
Qi Wang , Yicong Gao , Feng Lu , Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141
-
[14]
Tianlong Zhang , Rongling Zhang , Hongsheng Tang , Yan Li , Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006
-
[15]
Yanxin Wang , Hongjuan Wang , Yuren Shi , Yunxia Yang . Application of Python for Visualizing in Structural Chemistry Teaching. University Chemistry, 2024, 39(3): 108-117. doi: 10.3866/PKU.DXHX202306005
-
[16]
Zhiguang Xu , Xuan Xu , Qiong Luo , Ganquan Wang , Bin Peng . Reform and Practice of Online and Offline Blended Teaching in Structural Chemistry Course. University Chemistry, 2024, 39(6): 195-200. doi: 10.3866/PKU.DXHX202310112
-
[17]
Qiong Luo , Zhiguang Xu , Xuan Xu , Ganquan Wang , Bin Peng . Exploration of Innovative Teaching in Structural Chemistry Course under the Emerging Engineering Education Model. University Chemistry, 2025, 40(4): 200-207. doi: 10.12461/PKU.DXHX202407016
-
[18]
Dongdong Yao , JunweiGu , Yi Yan , Junliang Zhang , Yaping Zheng . Teaching Phase Separation Mechanism in Polymer Blends Using Process Representation Teaching Method: A Teaching Design for Challenging Theoretical Concepts in “Polymer Structure and Properties” Course. University Chemistry, 2025, 40(4): 131-137. doi: 10.12461/PKU.DXHX202408125
-
[19]
Yue Zhao , Yanfei Li , Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001
-
[20]
Ronghao Zhao , Yifan Liang , Mengyao Shi , Rongxiu Zhu , Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101
-
[1]
Metrics
- PDF Downloads(1)
- Abstract views(654)
- HTML views(62)