Citation: CHEN Run, WANG Zhi-yang, QIN Yong, WANG Lin-lin, WEI Chong-tao, WANG You-yang. Methane adsorption capacity of extracted coals under control of solvent polarity[J]. Journal of Fuel Chemistry and Technology, ;2015, 43(10): 1153-1157. shu

Methane adsorption capacity of extracted coals under control of solvent polarity

  • Corresponding author: CHEN Run,  WANG Lin-lin, 
  • Received Date: 24 April 2015
    Available Online: 29 May 2015

    Fund Project: 国家自然科学基金(41202117,41572138) (41202117,41572138)中国博士后基金(2013M540473) (2013M540473)江苏省博士后基金(1301035B) (1301035B)中央高校基本科研业务费专项基金(2014QNA17) (2014QNA17)煤层气资源与成藏过程教育部重点实验室开放基金(2013-006)资助项目 (2013-006)

  • Based upon isothermal methane adsorption on raw and solvent extracted coals, relationship between solvent polarity and methane adsorption capacity change of the coal was analyzed, and the possible geochemical mechanism was discussed from polarity of the solvents. The results show that methane isothermal adsorption curves on the extracted coals follow the Langmuir equation. Extraction with CS2 and C6H6 enhances methane adsorption capacities on extracted coals, and that with tetrahydrofuran (THF) and acetone is opposite. There is a negative correlation between methane adsorption capacity change of the coal and the solvent polarity, which can be explained by similarity-intermiscibility theory. The polarities of CS2 and C6H6 are weaker, which can extract more alkane and aromatic hydrocarbons with nonpolar molecule structure (-CH3 and -CH2-) to increase the adsorbed space of coal surface for methane adsorption. The polarities of THF and acetone are stronger, which can extract more non-hydrocarbon and asphaltene with polar molecule structure (-CHO, -OH and -COOH) to reduce the adsorbed space of coal surface for methane adsorption.
  • 加载中
    1. [1]

      [1] YEE D, SEIDLE J P, HANSON W B. Gas sorption on coal and measurement of gas content. Hydrocarbons from Coal: AAPG Studies in Geology, Oklahoma, 1993, 38(9): 203-218.

    2. [2]

      [2] 钟玲文, 张新民. 煤的吸附能力与其煤化程度和煤岩组成间的关系[J]. 煤田地质与勘探, 1990, 27(4): 29-35. (ZHONG Ling-wen, ZHANG Xin-min. Relationship between adsorption capacity of coal and coalification and micro-coal components[J], Coal Geol Explor, 1990, 27(4): 29-35.)

    3. [3]

      [3] 张丽萍, 苏现波, 曾荣树. 煤体性质对煤吸附容量的控制作用探讨[J]. 地质学报, 2006, 80(6): 910-915. (ZHANG Li-ping, SU Xian-bo, ZENG Rong-shu. Discussion on the controlling effects of coal properties on coal adsorption capacity[J]. Acta Geol Sin(Chin Ed), 2006, 80(6): 910-915.)

    4. [4]

      [4] 钟玲文. 煤的吸附性能及其影响因素[J]. 地球科学, 2004, 29(3): 327-332. (ZHONG Ling-wen. Adsorptive capacity of coals and its affecting factors[J]. Earth Sci, 2004, 29(3): 327-332.)

    5. [5]

      [5] 张庆玲, 崔永君, 曹利戈. 煤的等温吸附试验中各因素影响分析[J]. 煤田地质与勘探, 2004, 32(2): 16-19. (ZHANG Qing-ling, CUI Yong-jun, CAO Li-ge. Analysis on different factors affecting coal isothermal adsorption test[J]. Coal Geol Explor, 2004, 32(2): 16-19.)

    6. [6]

      [6] 秦勇, 宋全友, 傅雪海. 煤层气与常规油气共采可行性的探讨: 深部煤储层平衡水条件下的吸附效应[J]. 天然气地球科学, 2005, 16(4): 492-498. (QIN Yong, SONG Quan-you, FU Xue-hai. Discussion on reliability for co-mining the coalbed gas and normal petroleum and natural gas :absorptive effect of deep coal reservoir under condition of balanced water[J]. Nat Gas Geosci, 2005, 16(4): 492-498.)

    7. [7]

      [7] DAY S, SAKUROVS R, WEIR. Supercritical gas sorption on moist coals[J]. Int J Coal Geol, 2008, 74(1/4): 203-214.

    8. [8]

      [8] 陈润. 秦勇, 韦重韬. 镜煤有机溶剂二级抽提孔隙结构及吸附性差异[J]. 天然气地球科学, 2014, 25(7): 1103-1110. (CHEN Run, QIN Yong, WEI Chong-tao. Differences in pore structures and adsorptivity between raw and two-step-solvent-extracted vitrains[J]. Nat Gas Geosci, 2014, 25(7): 1103-1110.)

    9. [9]

      [9] 陈润, 王治洋, 秦勇, 韦重韬. 黔西滇东镜煤CS2抽余物的甲烷吸附特征及地球化学机理[J], 中国矿业大学学报, 2015, 44(4): 726-738. (CHEN Run, WANG Zhi-yang, QIN Yong, WEI Chong-tao. Adsorption characteristic of CS2-extracted vitrains from western guizhou and Eastern Yunnan and its geochemical mechanism[J]. J Chin Univ Min Technol, 2015, 44(4): 726-738.)

    10. [10]

      [10] 季淮君, 李增华, 杨永良, 刘震, 王润. 中变质煤小分子相对煤的吸附及渗流特性影响[J]. 燃料化学学报, 2015, 43(3): 281-288. (JI Huai-jun, LI Zeng-hua, YANG Yong-liang, LIU Zhen, WNAG Run. Effect of small molecule in mid-metamorphism coal on gas adsorption and flow characteristics[J]. J Fuel Chem Technol, 2015, 43(3): 281-288.)

    11. [11]

      [11] 张小东, 秦勇, 桑树勋. 不同煤级煤及其萃余物吸附性能的研究[J]. 地球化学, 2006, 35(5): 567-574. (ZHANG Xiao-dong, QIN Yong, SANG Shu-xun. Adsorption capacity of different metamorphism coals and their residues[J]. Geochimica, 2006, 35(5): 567-574.)

    12. [12]

      [12] 杨永良, 李增华, 季淮君, 彭英健, 刘震. 煤中可溶有机质对煤的孔隙结构及甲烷吸附特性影响[J]. 燃料化学学报, 2013, 41(4): 385-390. (YANG Yong-liang, LI Zeng-hua, JI Huai-jun. PENG Ying-jian, LIU Zhen. Effect of soluble organic matter in coal on its pore structure and methane sorption characteristics[J]. J Fuel Chem Technol, 2013, 41(4): 385-390.)

  • 加载中
    1. [1]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    2. [2]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    3. [3]

      Hui Wang Abdelkader Labidi Menghan Ren Feroz Shaik Chuanyi Wang . 微观结构调控的g-C3N4在光催化NO转化中的最新进展:吸附/活化位点的关键作用. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-. doi: 10.1016/j.actphy.2024.100039

    4. [4]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    5. [5]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    6. [6]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    7. [7]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    8. [8]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    9. [9]

      Yanglin Jiang Mingqing Chen Min Liang Yige Yao Yan Zhang Peng Wang Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-. doi: 10.3866/PKU.WHXB202309027

    10. [10]

      Chengshan Yuan Xiaolong Li Xiuping Yang Xiangfeng Shao Zitong Liu Xiaolei Wang Yongwen Shen . Standardized Operational Guidelines for Mixed-Solvent Recrystallization in Organic Chemistry Experiment. University Chemistry, 2025, 40(5): 122-127. doi: 10.12461/PKU.DXHX202504073

    11. [11]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    12. [12]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    13. [13]

      Shasha Ma Zujin Yang Jianyong Zhang . Facile Synthesis of FeBTC Metal-Organic Gel and Its Adsorption of Cr2O72−: A Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(8): 314-323. doi: 10.3866/PKU.DXHX202401008

    14. [14]

      Nengmin ZHUWenhao ZHUXiaoyao YINSongzhi ZHENGHao LIZeyuan WANGWenhao WEIXuanheng CHENWeihai SUN . Preparation of high-performance CsPbBr3 perovskite solar cells by the aqueous solution solvent method. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1131-1140. doi: 10.11862/CJIC.20240419

    15. [15]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    16. [16]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    17. [17]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    18. [18]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    19. [19]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    20. [20]

      Xueqi Yang Juntao Zhao Jiawei Ye Desen Zhou Tingmin Di Jun Zhang . 调节NNU-55(Fe)的d带中心以增强CO2吸附和光催化活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100074-. doi: 10.1016/j.actphy.2025.100074

Metrics
  • PDF Downloads(0)
  • Abstract views(1038)
  • HTML views(165)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return