Citation: TU Jun-ling, XU Yong-jun, DING Ming-yue, WANG Tie-jun, MA Long-long, WANG Min-long. Preparation of nano-structured Fe3O4 catalysts and their performance in Fischer-Tropsch synthesis[J]. Journal of Fuel Chemistry and Technology, ;2015, 43(7): 839-845. shu

Preparation of nano-structured Fe3O4 catalysts and their performance in Fischer-Tropsch synthesis

  • Corresponding author: DING Ming-yue, 
  • Received Date: 4 May 2015
    Available Online: 27 June 2015

    Fund Project: 国家自然科学基金(U1362109, 51206172) (U1362109, 51206172) 国家重点基础研究发展规划(973 计划, 2013CB228105) (973 计划, 2013CB228105) 广东省科技计划项目(2013B010405012) (2013B010405012) 中国科学院战略性先导科技专项课题(XDA05010108)。 (XDA05010108)

  • Two shape-defined nano-structured Fe3O4 catalysts such as Nano-Microsphere (FNM) and Nano-Flake (FNF) were prepared by a simple solvothermal method. The effects of precursor type on Fe3O4 crystal morphology was studied. It is found that the rate of nucleation and crystal growth have a crucial influence on the particle morphology. Compared to the traditional Fe catalyst, the shape-defined nano Fe3O4 catalysts could be easily reduced and transferred into active phases, resulting in higher Fischer-Tropsch synthesis (F-T) activity and C5+ selectivity. Especially, the FNM catalyst displayed higher catalytic activity and stability than the FNF catalyst. It was found that the FNF catalyst was more favorable to agglomeration because of shape change of the flakes. In addition, the results indicate that the hydrocarbon selectivity is strongly affected by the particle morphology.
  • 加载中
    1. [1]

      [1] DRY M E. The Fischer-Tropsch process: 1950-2000[J]. Catal Today, 2002, 71(3/4): 227-241.

    2. [2]

      [2] LIU Z P, HU P. A new insight into Fischer-Tropsch synthesis[J]. J Am Chem Soc, 2002, 124(39): 11568-11569.

    3. [3]

      [3] JAHANGIRI H, BENNETT J, MAHJOUBI P, WILSON K, GU S. A review of advanced catalyst development for Fischer-Tropsch synthesis of hydrocarbons from biomass derived syn-gas[J]. Catal Sci Technol, 2014, 4(8): 2210-2229.

    4. [4]

      [4] STEYNBERG A, DRY M. Fischer-Tropsch technology[M]. Elsevier, Amsterdam, 2004.

    5. [5]

      [5] DAVIS B H, OCCELLI M L. Fischer-Tropsch synthesis, catalysts and catalysis[M]. Elsevier, Amsterdam, 2006.

    6. [6]

      [6] ZHANG Q H, KANG J C, WANG Y. Development of novel catalysts for Fischer-Tropsch synthesis: Tuning the product selectivity[J]. Chem Cat Chem, 2010, 2(9): 1030-1058.

    7. [7]

      [7] BELL A T. The impact of nanoscience on heterogeneous catalysis[J]. Science, 2003, 299(5613): 1688-1691.

    8. [8]

      [8] MURZIN D Y. Size-dependent heterogeneous catalytic kinetics[J]. J Mol Catal A: Chem, 2010, 315(2): 226-230.

    9. [9]

      [9] SHROFF M D, KALAKKAD D S, COULTER K E, KOHLER S D, HARRINGTON M S, JACKSON N B, SAULT A G, DATYE A K. Activation of precipitated iron Fischer-Tropsch synthesis catalysts[J]. J Catal, 1995, 156(2): 185-207.

    10. [10]

      [10] OBRIEN R J, XU L G, SPICER R L, DAVIS B H. Activation study of precipitated iron Fischer-Tropsch catalysts[J]. Energy Fuel, 1996, 10(4): 921-926.

    11. [11]

      [11] RIEDEL T, SCHULZ H, SCHAUB G, JUN K W, HWANG J S, LEE K W. Fischer-Tropsch on iron with H2/CO and H2/CO2 as synthesis gases: The episodes of formation of the Fischer-Tropsch regime and construction of the catalyst[J]. Top Catal, 2003, 26(1/4): 41-54.

    12. [12]

      [12] BRATLIE K M, LEE H, KOMVOPOULOS K, YANG P D, SOMORJAI G A. Platinum nanoparticle shape effects on benzene hydrogenation selectivity[J]. Nano Lett, 2007, 7(10): 3097-3101.

    13. [13]

      [13] YANG C, ZHAO H B, HOU Y L, MA D. Fe5C2 nanoparticles: A facile bromide-induced synthesis and as an active phase for Fischer-Tropsch synthesis[J]. J Am Chem Soc, 2012, 134(38): 15814-15821.

    14. [14]

      [14] CALDERONE V R, SHIJU N R, CURULLA-FERRE D, CHAMBREY S, KHODAKOV A, ROSE A, THIESSEN J, JESS A, ROTHENBERG G. De novo design of nanostructured iron-cobalt Fischer-Tropsch catalysts [J]. Angew Chem Int Edit, 2013, 52(16): 4397-4401.

    15. [15]

      [15] PATZKE G R, ZHOU Y, KONTIC R, CONRAD F. Oxide nanomaterials: Synthetic developments, mechanistic studies, and technological innovations[J]. Angew Chem Int Edit, 2011, 50(4): 826-859.

    16. [16]

      [16] POLARZ S. Shape matters: Anisotropy of the morphology of inorganic colloidal particles-synthesis and function[J]. Adv Funct Mater, 2011, 21(17): 3214-3230.

    17. [17]

      [17] CHEN M, WU B H, YANG J, ZHENG N F. Small adsorbate-assisted shape control of Pd and Pt nanocrystals[J]. Adv Mat, 2012, 24(7): 862-879.

    18. [18]

      [18] SCHMIDT E, VARGAS A, MALLAT T, BAIKER A. Shape-selective enantioselective hydrogenation on Pt nanoparticles[J]. J Am Chem Soc, 2009, 131(34): 12358-12367.

    19. [19]

      [19] VAN BOKHOVEN J A. Understanding structure-performance relationships in oxidic catalysts: Controlling shape and tuning performance[J]. ChemCatChem, 2009, 1(3): 363-364.

    20. [20]

      [20] XIE X W, SHEN W J. Morphology control of cobalt oxide nanocrystals for promoting their catalytic performance[J]. Nanoscale, 2009, 1(1): 50-60.

    21. [21]

      [21] ZHOU K B, LI Y D. Catalysis based on nanocrystals with well-defined Facets[J]. Angew Chem Int Edit, 2012, 51(3): 602-613.

    22. [22]

      [22] BUKUR D B, MUKESH D, PATEL S A. Promoter effects on precipitated iron catalysts for Fischer-Tropsch synthesis[J]. Ind Eng Chem Res, 1990, 29(2): 194-204.

    23. [23]

      [23] LAMER V K. Nucleation in phase transitions[J]. Ind Eng Chem, 1952, 44(6): 1270-1277.

    24. [24]

      [24] LUO M S, O'BRIEN R, DAVIS B H. Effect of palladium on iron Fischer-Tropsch synthesis catalysts[J]. Catal Lett, 2004, 98(1): 17-22.

    25. [25]

      [25] KANG S H, BAE J W, PRASAD P S S, JUN K W. Fischer-Tropsch synthesis using zeolite-supported iron catalysts for the production of light hydrocarbons[J]. Catal Lett, 2008, 125(3/4): 264-270.

    26. [26]

      [26] DAVIS B H. Fischer-Tropsch synthesis: Reaction mechanisms for iron catalysts[J]. Catal Today, 2009, 141(1-2): 25-33.

    27. [27]

      [27] HERRANZ T, ROJAS S, PEREZ-ALONSO F J, OJEDA M, TERREROS P, FIERRO J L G. Genesis of iron carbides and their role in the synthesis of hydrocarbons from synthesis gas[J]. J Catal, 2006, 243(1): 199-211.

    28. [28]

      [28] GALVIS H M T, BITTER J H, DAVIDIAN T, RUITENBEEK M, DUGULAN A I, DE JONG K P. Iron particle size effects for direct production of lower olefins from synthesis gas[J]. J Am Chem Soc, 2012, 134(39): 16207-16215.

  • 加载中
    1. [1]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    2. [2]

      Jiahui YUJixian DONGYutong ZHAOFuping ZHAOBo GEXipeng PUDafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1

    3. [3]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    4. [4]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    5. [5]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    6. [6]

      Yuwei LiuYihui ZhuWeijian DuanYizhuo YangHaorui TuoChunhua Feng . Electrocatalytic nitrate reduction on Fe, Fe3O4, and Fe@Fe3O4 cathodes: Elucidating structure-sensitive mechanisms of direct electron versus hydrogen atom transfer. Chinese Chemical Letters, 2025, 36(6): 110347-. doi: 10.1016/j.cclet.2024.110347

    7. [7]

      Xiaofang Li Zhigang Wang . Modulating dz2-orbital occupancy of Au cocatalysts for enhanced photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(7): 100080-. doi: 10.1016/j.actphy.2025.100080

    8. [8]

      Yuan CONGYunhao WANGWanping LIZhicheng ZHANGShuo LIUHuiyuan GUOHongyu YUANZhiping ZHOU . Construction and photocatalytic properties toward rhodamine B of CdS/Fe3O4 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2241-2249. doi: 10.11862/CJIC.20240219

    9. [9]

      Qinwen ZhengXin LiuLintao TianYi ZhouLibing LiaoGuocheng Lv . Mechanism of Fenton catalytic degradation of Rhodamine B induced by microwave and Fe3O4. Chinese Chemical Letters, 2025, 36(4): 109771-. doi: 10.1016/j.cclet.2024.109771

    10. [10]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    11. [11]

      Hexing SONGZan SUN . Synthesis, crystal structure, Hirshfeld surface analysis, and fluorescent sensing for Fe3+ of an Mn(Ⅱ) complex based on 1-naphthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 885-892. doi: 10.11862/CJIC.20240402

    12. [12]

      Xun ZhuChenchen ZhangYingying LiYin LuNa HuangDawei Wang . Degradation of perfluorooctanoic acid by inductively heated Fenton-like process over the Fe3O4/MIL-101 composite. Chinese Chemical Letters, 2024, 35(12): 109753-. doi: 10.1016/j.cclet.2024.109753

    13. [13]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    14. [14]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    15. [15]

      Huyi Yu Renshu Huang Qian Liu Xingfa Chen Tianqi Yu Haiquan Wang Xincheng Liang Shibin Yin . Te-doped Fe3O4 flower enabling low overpotential cycling of Li-CO2 batteries at high current density. Chinese Journal of Structural Chemistry, 2024, 43(3): 100253-100253. doi: 10.1016/j.cjsc.2024.100253

    16. [16]

      Zhiwen HUPing LIYulong YANGWeixia DONGQifu BAO . Morphology effects on the piezocatalytic performance of BaTiO3. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 339-348. doi: 10.11862/CJIC.20240172

    17. [17]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    18. [18]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    19. [19]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    20. [20]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

Metrics
  • PDF Downloads(0)
  • Abstract views(399)
  • HTML views(23)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return