Citation:
XU Xiu-qiang, WANG Yong-gang, CHEN Guo-peng, CHEN Zong-ding, QIN Zhong-yu, DAI Jin-ze, ZHANG Shu, XU De-ping. Effects of steam on the reactivity and microstructure of char from in-situ gasification of brown coal[J]. Journal of Fuel Chemistry and Technology,
;2015, 43(5): 546-553.
-
To examine the effects of steam on the char reactivity and its microstructure, experiments of drying and pyrolysis of brown coal as well as the in-situ gasification of "hot" char were carried out in a newly-designed two-stage reactor. The reactivity and microstructure of in-situ gasification char were characterized by TGA, BET and Raman spectroscopy respectively. The results show that at low temperature of 600 ℃, the steam has little effect on the conversion, reactivity and microstructure of char. When it reaches 700~900 ℃, there are different change trends before and after 2 min of reaction between char and steam. In the first 2 min, the reactivity, the ratio of small aromatic ring systems (3~5 rings) to the large fused rings (≥6 rings) and O-containing functional groups decrease dramatically although the char conversion varies little; after 2 min, however, char conversion increases gradually, char reactivity, the ratio of small to big aromatic ring systems and O-containing functional groups decrease slowly. In addition, the pore structure of char follows almost the same variation before and after 2 min. During the first 2 min, a sharp decrease of the ratio of small to big aromatic ring systems and O-containing functional groups are the important factors leading to the decrease of char reactivity; while after 2 min, the change of aromatic ring systems results in the further decrease of char reactivity.
-
Keywords:
- brown coal,
- char,
- steam,
- in-situ gasification,
- reactivity,
- microstructure
-
-
-
[1]
[1] 王明敏, 张建胜, 张守玉, 吴晋沪, 岳光溪. 热解条件对煤焦比表面积及孔隙分布的影响[J]. 煤炭学报, 2008, 33(1): 76-79.(WANG Ming-min, ZHANG Jian-sheng, ZHANG Shou-yu, WU Jin-hu, YUE Guang-xi. Effect of pyrolysis conditions on the char surface area and pore distribution[J]. J Chin Coal Soc, 2008, 33(1): 76-79.)
-
[2]
[2] LI C Z. Importance of volatile-char interactions during the pyrolysis and gasification of low-rank fuels-A review[J]. Fuel, 2013, 112(10): 609-623.
-
[3]
[3] LI C Z. Some recent advances in the understanding of the pyrolysis and gasification behaviour of Victorian brown coal[J]. Fuel, 2007, 86(12/13): 1664-1683.
-
[4]
[4] 范冬梅, 朱治平, 那永洁, 张海霞, 吕清刚. 一种褐煤煤焦水蒸气和CO2气化活性的对比研究[J]. 煤炭学报, 2013, 38(4): 681-687.(FAN Dong-mei, ZHU Zhi-ping, NA Yong-jie, ZHANG Hai-xia, LÜ Qing-gang. A contrastive study on reactivity of brown coal char gasification with steam and CO2[J]. J Chin Coal Soc, 2013, 38(4): 681-687.)
-
[5]
[5] 王明敏, 张建胜, 张守玉, 吴晋沪, 岳光溪. 热解条件对煤焦结构及气化反应活性的影响[J]. 煤炭转化, 2007, 30(3): 21-24.(WANG Ming-min, ZHANG Jian-sheng, ZHANG Shou-yu, WU Jin-hu, YUE Guang-xi. Effect of pyrolysis conditions on the structure and gasification reactivity of char[J]. Coal Convers, 2007, 30(3): 21-24.)
-
[6]
[6] KEOWN D M, HAYASHI J I, LI C Z. Drastic changes in biomass char structure and reactivity upon contact with steam[J]. Fuel, 2008, 87(7): 1127-1132.
-
[7]
[7] TAY H L, KAJITANI S, ZHANG S, LI C Z. Effects of gasifying agent on the evolution of char structure during the gasification of Victorian brown coal[J]. Fuel, 2013, 103(1): 22-28.
-
[8]
[8] GUO X, TAY H L, ZHANG S, LI C Z. Changes in char structure during the gasification of a Victorian brown coal in steam and oxygen at 800 ℃[J]. Energy Fuels, 2008, 22(6): 4034-4038.
-
[9]
[9] XU C F, HU S, XIANG J, YANG H P, SUN L S, SU S, WANG B W, CHEN Q D, HE L M. Kinetic models comparison for steam gasification of coal/biomass blend chars[J]. Bioresour Technol, 2014, 171(11): 253-259.
-
[10]
[10] KAJITANI S, TAY H L, ZHANG S, LI C Z. Mechanisms and kinetic modelling of steam gasification of brown coal in the presence of volatile-char interactions[J]. Fuel, 2013, 103(1): 7-13.
-
[11]
[11] 曾玺, 王芳, 韩江则, 张聚伟, 刘云义, 汪印, 余剑, 许光文. 微型流化床反应分析及其对煤焦气化动力学的应用[J]. 化工学报, 2013, 64(1): 289-296.(ZENG Xi, WANG Fang, HAN Jiang-ze, ZHANG Ju-wei, LIU Yun-yi, WANG Yin, YU Jian, XU Guang-wen. Micro fluidized bed reaction analysis and its application to coal char gasification kinetics[J]. J Chem Ind Eng, 2013, 64(1): 289-296.)
-
[12]
[12] 张林仙, 黄戒介, 房倚天, 王洋. 中国无烟煤焦气化活性的研究-水蒸气与二氧化碳气化活性的比较[J]. 燃料化学学报, 2006, 34(3): 265-269.(ZHANG Lin-xian, HUANG Jie-jie, FANG Yi-tian, WANG Yang. Study on reactivity of Chinese anthracite chars gasification: Comparison of reactivity between steam and CO2 gasification[J]. J Fuel Chem Technol, 2006, 34(3): 265-269.)
-
[13]
[13] 许慎启, 周志杰, 杨帆, 于广锁, 于遵宏. 快速热解温度下的淮南煤焦与水蒸气气化反应的研究[J]. 高校化学工程学报, 2008, 22(6): 947-953.(XU Shen-qi, ZHOU Zhi-jie, YANG Fan, YU Guang-suo, YU Zun-hong. Effects of pyrolysis temperature on steam gasification of Huainan char[J]. J Chem Eng Chin Univ, 2008, 22(6): 947-953.)
-
[14]
[14] ASADULLAH M, ZHANG S, MIN Z H, YIMSIRI P, LI C Z. Effects of biomass char structure on its gasification reactivity[J]. Bioresour Technol, 2010, 101(20): 7935-7943.
-
[15]
[15] ZHANG S, MIN Z H, TAY H L, WANG Y, DONG L, LI C Z. Changes in char structure during the gasification of Mallee wood: Effects of particle size and steam supply[J]. Energy Fuels, 2012, 26(1): 193-198.
-
[16]
[16] 林雄超, 王彩红, 田斌, 张书, 周剑林, 王永刚. 脱灰对两种烟煤半焦碳结构及CO2气化反应性的影响[J]. 中国矿业大学学报, 2013, 42(6): 1040-1046.(LIN Xiong-chao, WANG Cai-hong, TIAN Bin, ZHANG Shu, ZHOU Jian-lin, WANG Yong-gang. Effects of de-ashing on the micro-structural transformation and CO2 reactivity of two Chinese bituminous coal chars[J]. J Chin Univ Min Technol, 2013, 42(6): 1040-1046.)
-
[17]
[17] 许修强, 王永刚, 陈宗定, 白磊, 张锟俊, 杨萨莎, 张书. 胜利褐煤半焦冷却处理对其微观结构及反应性的影响[J]. 燃料化学学报, 2015, 43(1): 1-4.(XU Xiu-qiang, WANG Yong-gang, CHEN Zong-ding, BAI Lei, ZHANG Kun-jun, YANG Sa-sha, ZHANG Shu. Influence of cooling treatments on char microstructure and reactivity of Shengli brown coal[J]. J Fuel Chem Technol, 2015, 43(1): 1-4.)
-
[18]
[18] ZHANG S, HAYASHI J I, LI C Z. Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part Ⅸ.Effects of volatile-char interactions on char-H2O and char-O2 reactivities[J]. Fuel, 2011, 90(4): 1655-1661.
-
[19]
[19] TAY H L, LI C Z. Changes in char reactivity and structure during the gasification of a Victorian brown coal: Comparison between gasification in O2 and CO2[J]. Fuel Process Technol, 2010, 91(8): 800-804.
-
[20]
[20] LI X J, HAYASHI J I, LI C Z. Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part VII. Raman spectroscopic study on the changes in char structure during the catalytic gasification in air[J]. Fuel, 2006, 85(10/11): 1509-1517.
-
[21]
[21] ZHANG S, MIN Z H, TAY H L, ASADULLAH M, LI C Z. Effects of volatile-char interactions on the evolution of char structure during the gasification of Victorian brown coal in steam[J]. Fuel, 2006, 90(4): 1529-1535.
-
[22]
[22] LI T T, ZHANG L, DONG L, LI C Z. Effects of gasification atmosphere and temperature on char structural evolution during the gasification of Collie sub-bituminous coal[J]. Fuel, 2014, 117(1): 1190-1195.
-
[23]
[23] TAY H L, KAJITANI S, ZHANG S, LI C Z. Inhibiting and other effects of hydrogen during gasification: Further insights from FT-Raman spectroscopy[J]. Fuel, 2014, 116(15): 1-6.
-
[24]
[24] TAY H L, KAJITANI S, WANG S, LI C Z. A preliminary Raman spectroscopic perspective for the roles of catalysts during char gasification[J]. Fuel, 2014, 121(4): 165-172.
-
[25]
[25] SONG Y, WANG Y, HU X, HU S, XIANG J, ZHANG L, ZHANG S, MIN Z H, LI C Z. Effects of volatile-char interactions on in situ destruction of nascent tar during the pyrolysis and gasification of biomass. Part I. Roles of nascent char[J]. Fuel, 2014, 122(4): 60-66.
-
[26]
[26] LI X J, LI C Z. Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part VIII. Catalysis and changes in char structure during gasification in steam[J]. Fuel, 2006, 85(10/11): 1518-1525.
-
[27]
[27] 向银花, 王洋, 张建民, 董众兵, 李斌. 煤焦气化过程中比表面积和孔容积变化规律及其影响因素研究[J]. 燃料化学学报, 2002, 30(2): 108-112.(XIANG Yin-hua, WANG Yang, ZHANG Jian-min, DONG Zhong-bing, LI Bin. Study on structural properties and their affecting factors during gasification of chars[J]. J Fuel Chem Technol, 2002, 30(2): 108-112.)
-
[1]
-
-
-
[1]
Xue Liu , Lipeng Wang , Luling Li , Kai Wang , Wenju Liu , Biao Hu , Daofan Cao , Fenghao Jiang , Junguo Li , Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049
-
[2]
Baitong Wei , Jinxin Guo , Xigong Liu , Rongxiu Zhu , Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003
-
[3]
Tianqi Bai , Kun Huang , Fachen Liu , Ruochen Shi , Wencai Ren , Songfeng Pei , Peng Gao , Zhongfan Liu . 石墨烯厚膜热扩散系数与微观结构的关系. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-. doi: 10.3866/PKU.WHXB202404024
-
[4]
Cuicui Yang , Bo Shang , Xiaohua Chen , Weiquan Tian . Understanding the Wave-Particle Duality and Quantization of Confined Particles Starting from Classic Mechanics. University Chemistry, 2025, 40(3): 408-414. doi: 10.12461/PKU.DXHX202407066
-
[5]
Jiajie Li , Xiaocong Ma , Jufang Zheng , Qiang Wan , Xiaoshun Zhou , Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117
-
[6]
Yuting Zhang , Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037
-
[7]
Hui Wang , Abdelkader Labidi , Menghan Ren , Feroz Shaik , Chuanyi Wang . 微观结构调控的g-C3N4在光催化NO转化中的最新进展:吸附/活化位点的关键作用. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-. doi: 10.1016/j.actphy.2024.100039
-
[8]
Renxiao Liang , Zhe Zhong , Zhangling Jin , Lijuan Shi , Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024
-
[9]
Jiaqi AN , Yunle LIU , Jianxuan SHANG , Yan GUO , Ce LIU , Fanlong ZENG , Anyang LI , Wenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072
-
[10]
Ke QIAO , Yanlin LI , Shengli HUANG , Guoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265
-
[11]
Yaping Li , Sai An , Aiqing Cao , Shilong Li , Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185
-
[12]
Mei Yan , Rida Feng , Yerdos·Tohtarkhan , Biao Long , Li Zhou , Chongshen Guo . Expansion and Extension of Liquid Saturated Vapor Measurement Experiment. University Chemistry, 2024, 39(3): 294-301. doi: 10.3866/PKU.DXHX202308103
-
[13]
Yingchun ZHANG , Yiwei SHI , Ruijie YANG , Xin WANG , Zhiguo SONG , Min WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078
-
[14]
Yinuo Wang , Siran Wang , Yilong Zhao , Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063
-
[15]
Ping Song , Nan Zhang , Jie Wang , Rui Yan , Zhiqiang Wang , Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087
-
[16]
Ziliang KANG , Jiamin ZHANG , Hong AN , Xiaohua LIU , Yang CHEN , Jinping LI , Libo LI . Preparation and water adsorption properties of CaCl2@MOF-808 in-situ composite moulded particles. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2133-2140. doi: 10.11862/CJIC.20240282
-
[17]
Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018
-
[18]
Wen YANG , Didi WANG , Ziyi HUANG , Yaping ZHOU , Yanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276
-
[19]
Wentao Lin , Wenfeng Wang , Yaofeng Yuan , Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095
-
[20]
Dongheng WANG , Si LI , Shuangquan ZANG . Construction of chiral alkynyl silver chains and modulation of chiral optical properties. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 131-140. doi: 10.11862/CJIC.20240379
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(608)
- HTML views(27)