Citation: ZOU Lu, DENG Chao, GAO Ying, WU Bing. Palladium catalysts supported by polyaniline carbon composite for formic acid electrooxidation[J]. Journal of Fuel Chemistry and Technology, ;2015, 43(4): 507-512. shu

Palladium catalysts supported by polyaniline carbon composite for formic acid electrooxidation

  • Corresponding author: WU Bing, 
  • Received Date: 29 October 2014

    Fund Project: 哈尔滨市科技创新人才专项资金(2010RFXXG018) (2010RFXXG018)黑龙江省自然科学基金(B201002) (B201002)黑龙江省高校科技创新团队建设计划(2011TD010)。 (2011TD010)

  • The composite support (PAnC) with conductive polymer polyaniline and activated carbon are prepared. The catalytic performance of the Pd catalyst prepared with PAnC as a support is better than that of the catalyst prepared with activated carbon alone. In addition, the polyaniline carbon support (PAnC-S), which prepared with doping sodium dodecyl sulfate, owns lower charge transfer resistance, more mesoporous between 10~25 nm, larger specific surface area, 94.9 m2/g. PAnC-S and PAnC have uniform particle sizes of about 30 nm. The Pd catalysts prepared with PAnC-S and PAnC support have larger electrochemical surface area, 84.7 and 62.6 m2/g, respectively. Pd/PAnC-S and Pd/PAnC have higher activity and stability for formic acid electrooxidation compared with the Pd/C.
  • 加载中
    1. [1]

      [1] 陆天虹, 唐亚文, 张玲玲, 高颖. 直接甲酸燃料电池的优越性[J]. 电池工业, 2007, 11(6):412-414. (LU Tian-hong, TANG Ya-wen, ZHANG Ling-ling, GAO Ying. Advantages of the direct formic acid fuel cells[J]. Chin Battery Ind, 2007, 11(6):412-414.)

    2. [2]

      [2] 贾羽洁, 蒋剑春, 孙康, 陆天虹. Pt/Au原子比对活性炭负载Au-Pt直接甲酸燃料电池阴极催化剂性能的影响[J]. 燃料化学学报, 2011, 39(10):792-795. (JIA Yu-jie, JIANG Jian-chun, SUN Kang, LU Tian-hong. Effect of Pd/Au calalyst on its cathodic performance in direct formic acid fuel cell[J]. J Fuel Chem Technol, 2011, 39(10):792-795.)

    3. [3]

      [3] 刘春艳, 徐斌, 唐亚文, 曹高萍. 大孔炭载Pd催化剂对甲酸氧化的电催化性能[J]. 物理化学学报, 2011, 27(3):604-608. (LIU Chun-yan, XU Bin, TANG Ya-wen, CAO Gao-ping. Electrocatalytic performance of Pd catalyst supported on macropore carbon for oxidation of formic acid[J]. Acta Phys-Chim Sin, 2011, 27(3):604-608.)

    4. [4]

      [4] 刘佳佳, 邬冰, 高颖. 聚吡咯碳载Pd催化剂的制备及对甲酸的电催化氧化[J]. 化学学报, 2012, 70:1743-147. (LIU Jia-jia, WU Bing, GAO Ying. Preparation of polypyrrole-carbon black supported Pd catalyst for formic acid electrooxidation[J]. Acta Chim Sin, 2012, 70:1743-1747.)

    5. [5]

      [5] PANDEY R K, LAKDHMINARAYANAN V. Electro-oxidation of formic acid and ethanol on electrodeposited Pd-polyaniline nanofiber films in acid and alkaline medium[J]. J Phys Chem C, 2009, 113(52):21596-21603.

    6. [6]

      [6] LIAO C, WEI Z D, CHEN S G, LI L. Synergistic effect of polyaniline modified Pd/C catalysts on formic acid oxidation in a weak acid medium(NH4)2SO4[J]. J Phys Chem C, 2009, 113(14):5705-5710.

    7. [7]

      [7] DHAOUI W, HASIK M, DJUIRADO D, BEMASIK A. Redox behaviour of polyaniline-palladium catalytic system in the presesnce of formic acid[J]. Synth Met, 2010, 160(23):2546-2551.

    8. [8]

      [8] DONG Q Z, ZHU L Y, WANG H S, GUO C. Polyaniline poly(O-methoxyaniline) composite films as supports of Pt-Ru nanoparticles for formic acid electro-oxidation[J]. Int J Electrochem Sci, 2014, 9(12):8024-8044.

    9. [9]

      [9] ZHANG Q, LI Y, LI Y. Electropolymerization of grapheme oxide/polyaniline composite for high-performance supercapacitor[J]. Electrochim Acta, 2013, 90:95-100.

    10. [10]

      [10] CHUNG W, SIN J C, PIN R C. Doping process effect of polyaniline doped with poly(stryrenesulfonic acid) supported platinum for methanol oxidation[J]. J Taiwan Inst Chem Eng, 2013, 44(3):497-504.

    11. [11]

      [11] MOGHADDAM R, PICKUP P. Formic acid oxidation at spontaneously deposited palladium on polyaniline modified carbon fibre paper[J]. Electrochim Acta, 2011, 56(22):7666-7672.

    12. [12]

      [12] 孙通, 李晓霞, 郭翔宇, 赵纪金, 马森, 赵楠. 不同酸掺杂聚苯胺的电化学聚合及性能[J]. 化工进展, 2013, 32(8):1870-1876. (SUN Tong, LI Xiao-xia, GUO Xiang-yu, ZHAO Ji-jin, MA Sen, ZHAO Nan. Electrochemical polymerization and properties of polyaniline doped with different acids[J]. Chem Ind Eng Prog, 2013, 32(8):1870-1876.)

    13. [13]

      [13] 吴丹, 朱超, 强骥鹏, 王杨勇. 聚苯胺的掺杂及其应用[J]. 工程塑料应用, 2006, 34(9):70-73. (WU Dan, ZHU Chao, QIANG Ji-peng, WANG Yang-yong. Doping and application of polyaniline[J]. Eng Plast Appl, 2006, 34(9):70-73.)

    14. [14]

      [14] HOU J X, LIU Z L, ZHANG P Y. A new method for fabrication of graphene/polyaniline nanocomplex modified microbial fuel cell anodes[J]. J Power Sources, 2013, 224:139-144.

    15. [15]

      [15] 刘艳花, 肖利, 方正. 高氯酸掺杂聚苯胺的合成及其电化学性能[J]. 湖南师范大学自然科学学报, 2011, 34(2):59-64. (LIU Yan-hua, XIAO Li, FANG Zheng. Preparation of perchloric acid-doped plyaniline and its electrochemical performance[J]. J Hunan Norm Univ, Nat Sci Ed, 2011, 34(2):59-64.)

    16. [16]

      [16] ZHANG H R, WANG X, SHAN Q, WANG Z. Tunable electrode morphology used for high performance supercapacitor polypyrrole nanoaterials as model materials[J]. Electrochim Acta, 2013, 90:535-541.

    17. [17]

      [17] GUADAGNINI L, TONELLI D, GIORGETTI M. Improved performances of electrodes based on Cu2+-loaded copper hexacyanoferrate for hydrogen peroxide detection[J]. Electrochim Acta, 2010, 55(17):5036-5039.

    18. [18]

      [18] 张悦, 汪广进, 潘牧. 基于碳纸电极电化学快速合成聚苯胺纳米纤维[J]. 高等学校化学学报, 2014, 35(10):2234-2238. (ZHANG Yue, WANG Guang-jin, PAN Mu. Fast electropolymerization of polyaniline nanofibers on carbon paper[J]. Chem J Chin Univ, 2014, 35(10):2234-2238.)

    19. [19]

      [19] GAO Z, YANG W L, WANG J, YAN H J. Electrochemical synthesis of layer-by-layer reduced graphene oxide sheets polyaniline nanofiber composite and its electrochemical performance[J]. Electrochim Acta, 2013, 91:185-194.

  • 加载中
    1. [1]

      Li Jiang Changzheng Chen Yang Su Hao Song Yanmao Dong Yan Yuan Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002

    2. [2]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    3. [3]

      Xueting Cao Shuangshuang Cha Ming Gong . 电催化反应中的界面双电层:理论、表征与应用. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-. doi: 10.1016/j.actphy.2024.100041

    4. [4]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    5. [5]

      Jianchun Wang Ruyu Xie . The Fantastical Dance of Miss Electron: Contra-Thermodynamic Electrocatalytic Reactions. University Chemistry, 2025, 40(4): 331-339. doi: 10.12461/PKU.DXHX202406082

    6. [6]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    7. [7]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    8. [8]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    9. [9]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    10. [10]

      Xi Xu Chaokai Zhu Leiqing Cao Zhuozhao Wu Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039

    11. [11]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    12. [12]

      Xia ZHANGYushi BAIXi CHANGHan ZHANGHaoyu ZHANGLiman PENGShushu HUANG . Preparation and photocatalytic degradation performance of rhodamine B of BiOCl/polyaniline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 913-922. doi: 10.11862/CJIC.20240255

    13. [13]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    14. [14]

      Hao WANGKun TANGJiangyang SHAOKezhi WANGYuwu ZHONG . Electro-copolymerized film of ruthenium catalyst and redox mediator for electrocatalytic water oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2193-2202. doi: 10.11862/CJIC.20240176

    15. [15]

      Haoying ZHAILanzong WENWenjie LIAOQin LIWenjun ZHOUKun CAO . Metal-organic framework-derived sulfur-doped iron-cobalt tannate nanorods for efficient oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 1037-1048. doi: 10.11862/CJIC.20240320

    16. [16]

      Rui PANYuting MENGRuigang XIEDaixiang CHENJiefa SHENShenghu YANJianwu LIUYue ZHANG . Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1015-1024. doi: 10.11862/CJIC.20230433

    17. [17]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    18. [18]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    19. [19]

      Ling Liu Haibin Wang Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080

    20. [20]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

Metrics
  • PDF Downloads(0)
  • Abstract views(465)
  • HTML views(33)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return