Citation: ZHANG Yue, WANG Chun-bo, LIU Hui-min, SUN Zhe, LI Wen-han, ZHANG Yong-sheng, PAN Wei-ping. Removal of gas-phase As2O3 in dry process by metal oxide adsorbents[J]. Journal of Fuel Chemistry and Technology, ;2015, 43(4): 476-482. shu

Removal of gas-phase As2O3 in dry process by metal oxide adsorbents

  • Corresponding author: ZHANG Yue, 
  • Received Date: 5 November 2014

    Fund Project: 国家高技术研究发展计划(863计划,2013AA065404) (863计划,2013AA065404)中央高校基本科研业务费专项资金(2014XS81)。 (2014XS81)

  • The adsorption of gas-phase As2O3 by metal oxides like CaO, Fe2O3 and Al2O3 was investigated in a fixed bed reactor with an arsenic continuous generation facility. The results indicated that the adsorption of As2O3 on metal oxides is dominated by chemical adsorption at a temperature between 600 and 900 ℃; the adsorption quantity and efficiency are decreased with the increase of temperature. The arsenic adsorption ability of three metal oxide follows the order of Fe2O3 > CaO > Al2O3. The saturation adsorption phenomenon will not occur under the current conditions with the concentration of arsenic in the gas phase in the range between 4.5×10-6 and 13.5×10-6 (volume ratio); the adsorption efficiency for each adsorbent is only affected by the adsorption temperature and the same adsorption efficiency can be achieved with different arsenic concentrations.
  • 加载中
    1. [1]

      [1] SWAINE D. Why trace elements are important[J]. Fuel Process Technol, 2000, 65-66:21-33.

    2. [2]

      [2] 郑刘根, 刘桂建, CHOU Chen-lin, 高连芬, 彭子成. 中国煤中砷的含量分布、赋存状态、富集及环境意义[J]. 地球学报, 2006, 27(4):355-366. (ZHENG Liu-gen, LIU Gui-jian, CHOU Chen-lin, GAO Lian-fen, PENG Zi-cheng. Arsenic in Chinese coals:Its abundance, distribution, modes of occurrence, enrichment processes, and environmental significance[J]. Acta Geol Sin, 2006, 27(4):355-366.

    3. [3]

      [3] TIAN H Z, WANG Y, XUE Z G, QU Y P, CHAI F H, HAO J M. Atmospheric emissions estimation of Hg, As, and Se from coal-fi red power plants in China, 2007[J]. Sci Total Environ, 2011, 409(16):3078-3081.

    4. [4]

      [4] MAHULI S, AGNIHOTI R, CHAUK S, GHOSH-DASTIDAR A, FAN L. Mechanism of arsenic sorption by hydrated lime[J]. Environ Sci Technol, 1997, 31(11):3226-3231.

    5. [5]

      [5] WINTER R, MALLEPALLI R, HELLEM K, SZYDLO S. Determination of As, Cd, Cr, and Pb species formed in a combustion environment[J]. Combust Sci Technol, 1994, 101(3):45-48.

    6. [6]

      [6] 王起超, 邵庆春, 康淑莲, 王志刚, 邹山同. 煤中15种微量元素在燃烧产物中的分配[J]. 燃料化学学报, 1996, 24(2):137-142. (WANG Qi-chao, SHAO Qing-chun, KANG Shu-lian, WANG Zhi-gang, ZHOU Shan-tong. Distribution of 15 trace elements in the combustion products of coal[J]. J Fuel Chem Technol, 1996, 24(2):137-142.)

    7. [7]

      [7] LOPEZ-ANTON M, DIZA-SOMOANO M, SPEARSD, MARTÍNEZ-TARAZONA M. Arsenic and selenium capture by fly ashes at low temperature[J]. Environ Sci Technol, 2006, 40(12):3947-3951.

    8. [8]

      [8] SEAMES W, WENDT J. Regimes of association of arsenic and selenium during pulverized coal combustion[J]. Proc Combust Inst, 2007, 31(2):2839-2846.

    9. [9]

      [9] LOPEZ-ANTON M, DIZA-SOMOANO M, FIERRO J, MARTÍNEZ-TARAZONA M. Retention of arsenic and selenium compounds present in coal combustion and gasification flue gases using activated carbon[J]. Fuel Process Technol, 2008, 88(8):799-805.

    10. [10]

      [10] DIZA-SOMOANO M, MARTINEZ-TARAZONAM R. Retention of trace elements using fly ash in a coal gasification flue gas[J]. J Chem Technol Biot, 2002, 77(3):396-402.

    11. [11]

      [11] JADHAV R, FAN L. Capture of gas-phase arsenic oxide by lime:Kinetic and mechanistic studies[J]. Environ Sci Technol, 2001, 35(4):794-799.

    12. [12]

      [12] JADHAV R, AGNIHOTRI R, GUPTA H, FAN L. Mechanism of selenium sorption by activated carbon[J]. Can J Chem Eng, 2000, 78(1):168-174.

    13. [13]

      [13] RUPP E, GRANITE E, STANKO D. Laboratory scale studies of Pd/γ-Al2O3 sorbents for the removal of trace contaminants from coal-derived fuel gas at elevated temperatures[J]. Fuel, 2013, 108:131-136.

    14. [14]

      [14] BALTRUS J, GRANITE E, PENNLINE H, STANKO D, HAMILTON H, ROWSELL L, POULSTON S, SMITH A, CHU W. Surface characterization of palladium-alumina sorbents for high-temperature capture of mercury and arsenic from fuel gas[J]. Fuel, 2010, 89:1323-1325.

    15. [15]

      [15] WOUTERLOOD H, BOWLING K. Removal and recovery of arsenious oxide from flue gas[J]. Environ Sci Technol, 1979, 13(1):93-97.

    16. [16]

      [16] STERLING R, HELBLE J. Reaction of arsenic vapor species with fly ash compounds:Kinetics and speciation of the reaction with calcium silicates[J]. Chemosphere, 2003, 51(10):1111-1119.

    17. [17]

      [17] 张军营, 任德贻, 钟秦, 徐复铭, 张衍国. CaO对煤中砷挥发性的抑制作用[J]. 燃料化学学报, 2000, 28(3):198-200. (ZHANG Jun-ying, REN De-yi, ZHONG Qin, XU Fu-ming, ZHANG Yan-guo. Restraining of arsenic volatility using lime in coal combustion[J]. J Fuel Chem Technol, 2000, 28(3):198-200.)

    18. [18]

      [18] 陈锦凤, 李翼, 朱丹, 王肖戈, 成金华, 帅琴. 高温燃煤钙基纳米金属氧化物复合吸附剂同时除砷脱硫研究[J]. 分析科学学报, 2010, 26(2):179-182. (CHEN Jin-feng, LI Yi, Zhu Dan, WANG Xiao-ge, CHENG Jin-hua, SHUAI Qing. Simultaneous dearsenizationand desulfurization bycalcium-based nano-metal oxides compoundsorbents during coal combustion[J]. J Anal Sci, 2010, 26(2):179-182.)

    19. [19]

      [19] 陈锦凤. 燃煤钙基固砷剂的影响因素研究[J]. 环境污染与防治, 2009, 31(7):59-61. (CHEN Jin-feng. Study on the influence factors of calcium-based arsenic capture sorbent in coal combustion[J]. Environ Poll Control, 2009, 31(7):59-61.)

    20. [20]

      [20] 陈锦凤, 帅琴. 煤燃烧过程中钙基材料除砷脱硫的试验研究[J]. 合肥工业大学学报, 2012, 35(1):112-115. (CHEN Jin-feng, SHUAI Qing. Study of simultaneous dearsenic and desulfurization by calcium-based materials during coal combustion[J]. J Hefei Univ Technol, 2012, 35(1):112-115.)

    21. [21]

      [21] DIAZ-SOMOANO M, MARTINEZ-TARAZONA M. Retention of arsenic and selenium compounds using limestones in a coal gasification flue gas[J]. Environ Sci Technol, 2004, 28(3):899-903.

    22. [22]

      [22] 王明仕, 郑宝山, FINKELMAN R, 胡军, 吴代赦, 李社红. 煤中砷赋存状态与其脱洗率的关系[J]. 燃料化学学报, 2005, 33(2):253-256. (WANG Ming-shi, ZHENG Bao-shan, FINKELMAN R, HU Jun, WU Dai-she, LI She-hong. Relationship between occurrence mode of arsenic in coal and its washing rate[J]. J Fuel Chem Technol, 2005, 33(2):253-256.)

    23. [23]

      [23] 孙俊民, 姚强, 刘惠永, 鲁静, 尹国勋, 赵成美. 燃煤排放可吸入颗粒物中砷的分布于富集机理[J]. 煤炭学报, 2004, 19(1):78-82. (SUN Jun-min, YAO Qiang, LIU Hui-yong, LU Jing, YIN Guo-xun, ZHAO Cheng-mei. Distribution of arsenic in PM10 Distribution of arsenic in & PM2.5 caused by coal combustion and its enrichment mechanism[J]. J China Coal Soc, 2004, 19(1):78-82.)

    24. [24]

      [24] DIZA-SOMOANO M, MARTINEZ-TARAZONA M. Retention of arsenic and selenium compounds using limestone in a coal gasification flue gas[J]. Environ Sci Technol, 2004, 38(3):899-903.

    25. [25]

      [25] RIESS M, MULLER M. High temperature sorption of arsenic in gasification atmosphere[J]. Energy Fuels, 2011, 25(4):1438-1443.

  • 加载中
    1. [1]

      Jun DongSenyuan TanSunbin YangYalong JiangRuxing WangJian AoZilun ChenChaohai ZhangQinyou AnXiaoxing Zhang . Spatial confinement of free-standing graphene sponge enables excellent stability of conversion-type Fe2O3 anode for sodium storage. Chinese Chemical Letters, 2025, 36(3): 110010-. doi: 10.1016/j.cclet.2024.110010

    2. [2]

      Yuanyuan JIANGFangfang TUYuhong ZHANGShi CHENJiayuan XIANGXinhui XIA . Preparation and electrochemical properties of high-stability cathode prelithiation additive. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1101-1111. doi: 10.11862/CJIC.20240441

    3. [3]

      Lei Shu Zhengqing Hao Kai Yan Hong Wang Lihua Zhu Fang Chen Nan Wang . Development of a Double-Carbon Related Experiment: Preparation, Characterization and Carbon-Capture Ability of Eggshell-Derived CaO. University Chemistry, 2024, 39(4): 149-156. doi: 10.3866/PKU.DXHX202310134

    4. [4]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    5. [5]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    6. [6]

      Qianqian Zhong Yucui Hao Guotao Yu Lijuan Zhao Jingfu Wang Jian Liu Xiaohua Ren . Comprehensive Experimental Design for the Preparation of the Magnetic Adsorbent Based on Enteromorpha Prolifera and Its Utilization in the Purification of Heavy Metal Ions Wastewater. University Chemistry, 2024, 39(8): 184-190. doi: 10.3866/PKU.DXHX202312013

    7. [7]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    8. [8]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    9. [9]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    10. [10]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    11. [11]

      Cailiang YueNan SunYixing QiuLinlin ZhuZhiling DuFuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698

    12. [12]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    13. [13]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    14. [14]

      Shasha Ma Zujin Yang Jianyong Zhang . Facile Synthesis of FeBTC Metal-Organic Gel and Its Adsorption of Cr2O72−: A Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(8): 314-323. doi: 10.3866/PKU.DXHX202401008

    15. [15]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    16. [16]

      Xueqi Yang Juntao Zhao Jiawei Ye Desen Zhou Tingmin Di Jun Zhang . 调节NNU-55(Fe)的d带中心以增强CO2吸附和光催化活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100074-. doi: 10.1016/j.actphy.2025.100074

    17. [17]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    18. [18]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    19. [19]

      Shiyi WANGChaolong CHENXiangjian KONGLansun ZHENGLasheng LONG . Polynuclear lanthanide compound [Ce4Ce6(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342

    20. [20]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

Metrics
  • PDF Downloads(0)
  • Abstract views(712)
  • HTML views(26)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return