Citation: TANG Xiao-dong, YUAN Jiao-yang, LI Jing-jing, ZHANG Yong-fen, HU tao. Alkylation desulfurization of FCC gasoline catalyzed by pyridine ionic liquid[J]. Journal of Fuel Chemistry and Technology, ;2015, 43(4): 442-448. shu

Alkylation desulfurization of FCC gasoline catalyzed by pyridine ionic liquid

  • Corresponding author: TANG Xiao-dong, 
  • Received Date: 3 November 2014

  • Brønsted acidic ionic liquid [BPY]HSO4 was synthesized and characterized by FT-IR and 1H-NMR. [BPY]HSO4 was then used as a catalyst in alkylation desulfurization of FCC gasoline; the effects of the reaction temperature, time and mass ratio of ionic liquid to oil on the desulfurization efficiency and FCC gasoline quality were investigated. The results showed that after reaction for 90 min under 65 ℃ and an ionic liquid to oil mass ratio of 0.09, the sulfur content of FCC gasoline is decreased from 580.0 to 6.4 μg/g, with a desulfurization rate of 98.90%, which can meet the request of Chinese National Standard V for the sulfur content in motor gasoline (< 10 μg/g). A survey on the distribution of sulfur compounds indicated that sulfur compounds are transferred from light fraction (< 170 ℃) to heavy fraction (> 170 ℃) with the help of [BPY]HSO4 and the sulfur compounds in heavy fraction can then be removed further by hydrodesulfurization. PONA results indicated that the alkylation desulfurization catalyzed by [BPY]HSO4 has little effect on hydrocarbon composition and octane number of FCC gasoline. Moreover, the [BPY]HSO4 ionic liquid can be recycled through extraction and reused in the alkylation desulfurization.
  • 加载中
    1. [1]

      [1] 任杰, 张运湘, 慎炼. 催化汽油氧气氧化及萃取脱硫的数学模拟[J]. 石油学报(石油加工), 2010, 26(1):60-63. (REN Jie, ZHANG Yun-xiang, SHEN Lian. Mathematical simulation of desulfurization of catalytic cracking gasoline through oxygen oxidation and extraction[J]. Acta Petrol Sin (Pet Process Section), 2010, 26(1):60-63.)

    2. [2]

      [2] 张晓飞, 徐新良, 徐亚荣, 王吉德. Ti-MCM-41/H2O2·HCOOH催化氧化模拟汽油中噻吩的选择氧化及动力学[J]. 石油学报(石油加工), 2009, 25(6):856-860. (ZHANG Xiao-fei, XU Xin-liang, XU Ya-rong, WANG Ji-de. Selective oxidayion and kinetics of Ti-MCM-41/H2O2·HCOOH system for thiophene in simulated gasoline[J]. Acta Petrol Sin (Pet Process Section), 2009, 25(6):856-860.)

    3. [3]

      [3] 王青宁, 张正才, 谢振萍, 吴应琴, 李澜, 焦林宏. 凹凸棒黏土脱硫剂脱除RFCC汽油中的硫醇和硫醚[J]. 化工学报, 2012, 63(1):292-298. (WANG Qing-ning, ZHANG Zheng-cai, XIE Zhen-ping, WU Ying-qin, LI Lan, JIAO Lin-hong. Thiol and thioether removal from RFCC gasoline with attapulgite clay[J]. J Chem Ind Eng, 2012, 63(1):292-298.)

    4. [4]

      [4] 徐康文, 冯丽娟, 王景刚, 李宁慧, 李春虎. 介孔CuO/SiO2用于汽油氧化-吸附脱硫[J]. 石油学报(石油加工), 2012, 28(4):561-564. (XU Kang-wen, FENG Li-juan, WANG Jing-gang, LI Ning-hui, LI Chun-hu. Oxidation-adsorption desulfurization gasoline by mesoporous CuO/SiO2[J]. Acta Petrol Sin (Pet Process Section), 2012, 28(4):561-564.)

    5. [5]

      [5] 任杰, 袁海宽, 吴利军, 慎炼.催化汽油氧气氧化脱硫的反应动力学[J]. 化工学报, 2010, 61(1):66-71. (REN Jie, YUAN Hai-kuan, WU Li-jun, SHEN Lian. Reaction kinetics for oxygen oxidation desulfurization of catalytic cracking gasoline[J]. J Chem Ind Eng, 2010, 61(1):66-71.)

    6. [6]

      [6] DASTANIAN M,SEYEDEYN-AZAD F. Desulfurization of gasoline over nanoporous nickel-loaded Y-type zeolite at ambient conditions[J]. Ind Eng Chem Res, 2010, 49(22):11254-11259.

    7. [7]

      [7] DUPUY B, LAFORGE S,MORAIS C, BACHMANN C,MAGNOUX P, RICHARD F. Alkylation of 3-methylthiophene by 2-methyl-1-pentene over HY, HBEA and HMCM-22 acidic zeolites[J]. Appl Catal A:Gen, 2012, 413-414:192-204.

    8. [8]

      [8] ARIAS M,LAURENTI D,GEANTET C,VRINAT M, HIDEYUKI I,YOSHIMURA Y. Gasoline desulfurization by catalytic alkylation over silica-supported heteropolyacids:from model reaction to real feed conversion[J]. Catal Today, 2008, 130(1):190-194.

    9. [9]

      [9] ARIAS M, LAURENTI D, BELLIRE V, GEANTET C, VRINAT M, YOSHIMURA Y. Preparation of supported H3PW12040·6H2O for thiophenic compounds alkylation in FCC gasoline[J]. Appl Catal A:Gen, 2008, 348:142-147.

    10. [10]

      [10] WANG R, WAN J B, LI Y H, SUN H W. An insight into effect of methanol on catalytic behavior of Amberlyst 35 resins for alkylation desulfurization of fluid catalytic cracking gasoline[J]. Fuel, 2014, 115:609-617.

    11. [11]

      [11] 黄蔚霞, 李云龙, 汪燮卿. 离子液体在催化裂化汽油脱硫中的应用[J]. 化工进展, 2004, 23(3):297-299. (HUANG Wei-xia, LI Yun-long, WANG Xie-qing. Reducing sulfur content in FCC naphtha by using ionic liquid[J]. Chem Ind Eng Prog, 2004, 23(3):297-299.)

    12. [12]

      [12] 唐晓东, 郭巧霞, 冯雪峰, 金文中. FCC汽油烷基化脱硫的中试研究[J]. 石油炼制与化工, 2011, 42(1):37-39. (TANG Xiao-dong, GUO Qiao-xia, FENG Xue-feng, JIN Wen-zhong. Pilot plant test of FCC gasoline desulfurization by alkylation[J]. Petrol Process Petrochem, 2011, 42(1):37-39.)

    13. [13]

      [13] 柯明, 汤奕婷, 曹文智, 宋昭睁, 蒋庆哲.离子液体在FCC汽油脱硫中的应用研究[J]. 西南石油大学学报(自然科学版), 2010, 32(3):145-149. (KE Ming, TANG Yi-ting, CAO Wen-zhi, SONG Zhao-zheng, JIANG Qing-zhe. Study on application of ionic liquids as catalyst in desulfurization f FCC gasoline[J]. J Southwest Petrol Univ (Sci & Technol Ed), 2010, 32(3):145-149.)

    14. [14]

      [14] 董森, 王训遒, 王亚涛, 宁卓远, 郭学华, 付丽, 李洪娟, 陈志娟. 氯铝酸离子液体的再生方法:中国, 103521264A[P]. 2014-01-22. (DONG Sen, WANG Xun-qiu, WANG Ya-tao, NING Zhuo-yuan, GUO Xue-hua, FU Li, LI Hong-juan, CHEN Zhi-juan. A method of chloroaluminate ionic liquid regeneration:CN, 103521264A[P]. 2014-01-22.)

    15. [15]

      [15] ZHAO D S, WANG Y N, DUAN E H, ZHANG J. Oxidation desulfurization of fuel using pyridinium-based ionic liquids as phase-transfer catalysts[J]. Fuel Process Technol, 2010, 91(12):1803-1806.

    16. [16]

      [16] SHEN L Q, YIN H B, WANG A L, LU X F, ZHANG C H, CHEN F, WANG Y T, CHEN H J. Liquid phase catalytic dehydration of glycerol to acrolein over Brønsted acidic ionic liquid catalysts[J]. J Ind Eng Chem, 2014, 20(3):759-766.

    17. [17]

      [17] 王建龙, 赵地顺, 周二鹏, 董芝.吡啶类离子液体在汽油萃取脱硫中的应用研究[J]. 燃料化学学报, 2007, 35(3):293-296. (WANG Jian-long, ZHAO Di-shun, ZHOU Er-peng, DONG Zhi. Desulfurization of gasoline by extraction with N-alkyl-pyridinium-based ionic liquids[J]. J Fuel Chem Technol, 2007, 35(3):293-296.)

    18. [18]

      [18] ZAHNG Z K, LIU S L, ZHU X X, WANG Q X, XU L Y. Modification of Hβ zeolite by fluorine and its influence on olefin alkylation thiophenic sulfur in gasoline[J]. Fuel Process Technol, 2008, 89(1):103-110.

    19. [19]

      [19] LIU Y, YANG B L, YI C H, CHEN T, LI S S. Kinetics study of 3-methylthiophene alkylation with isobutylene catalyzed by NKC-9 ion exchange resin[J]. Ind Eng Chem Res, 2011, 50(16):9609-9616.

    20. [20]

      [20] 张泽凯, 刘盛林, 杜喜研, 曾蓬, 王清遐, 徐龙伢. 芳烃烷基化反应性能对烷基化脱除汽油中硫化物过程的影响[J].石油化工, 2006, 35(2):113-117. (ZHANG Ze-kai, LIU Sheng-lin, DU Xi-yan, ZENG Peng, WANG Qing-xia, XU Long-ya. Alkylations of aromtics and their influences on thiophenes alkylation in gasoline olefinic alkylation of thiophenic sulfur[J]. Petrochem Technol, 2006, 35(2):113-117.)

  • 加载中
    1. [1]

      Zhilian Liu Wengui Wang Hongxiao Yang Yu Cui Shoufeng Wang . Ideological and Political Education Design for the Synthesis of Irinotecan Drug Intermediate 7-Ethyl Camptothecin. University Chemistry, 2024, 39(2): 89-93. doi: 10.3866/PKU.DXHX202306012

    2. [2]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    3. [3]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    4. [4]

      Weikang Wang Yadong Wu Jianjun Zhang Kai Meng Jinhe Li Lele Wang Qinqin Liu . 三聚氰胺泡沫支撑的S型硫铟锌镉/硫掺杂氮化碳异质结的绿色H2O2合成:协同界面电荷转移调控与局域光热效应. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-. doi: 10.1016/j.actphy.2025.100093

    5. [5]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    6. [6]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    7. [7]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    8. [8]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    9. [9]

      Qiaowen CHANGKe ZHANGGuangying HUANGNuonan LIWeiping LIUFuquan BAICaixian YANYangyang FENGChuan ZUO . Syntheses, structures, and photo-physical properties of iridium phosphorescent complexes with phenylpyridine derivatives bearing different substituting groups. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 235-244. doi: 10.11862/CJIC.20240311

    10. [10]

      Hongjie SHENHaozhe MIAOYuhe YANGYinghua LIDeguang HUANGXiaofeng ZHANG . Synthesis, crystal structure, and fluorescence properties of two Cu(Ⅰ) complexes based on pyridyl ligand. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 855-863. doi: 10.11862/CJIC.20250009

    11. [11]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    12. [12]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    13. [13]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    14. [14]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    15. [15]

      Mei Yan Rida Feng Yerdos·Tohtarkhan Biao Long Li Zhou Chongshen Guo . Expansion and Extension of Liquid Saturated Vapor Measurement Experiment. University Chemistry, 2024, 39(3): 294-301. doi: 10.3866/PKU.DXHX202308103

    16. [16]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    17. [17]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    18. [18]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    19. [19]

      Hongyao Li Youyan Liu Luwei Dai Min Yang Qihui Wang . The Blessing of Indium Sulfide:Confronting the Narrow Path with Uric Acid. University Chemistry, 2024, 39(5): 325-335. doi: 10.3866/PKU.DXHX202311104

    20. [20]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

Metrics
  • PDF Downloads(0)
  • Abstract views(690)
  • HTML views(92)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return