Citation: MAO Yan-dong, JIN Ya-dan, LI Ke-zhong, BI Ji-cheng, LI Jin-lai, XIN Feng. Sintering behavior of different coal ashes in catalytic coal gasification process[J]. Journal of Fuel Chemistry and Technology, ;2015, 43(4): 402-409. shu

Sintering behavior of different coal ashes in catalytic coal gasification process

  • Corresponding author: LI Ke-zhong, 
  • Received Date: 17 December 2014

    Fund Project: 国家科技支撑计划(2009BAA25B00) (2009BAA25B00)国家重点基础研究发展规划(973计划,2011CB201305)。 (973计划,2011CB201305)

  • A homemade pressurized pressure-drop measuring device and X-ray diffractometer (XRD) analyzer were used to determine the effects of alkali catalyst addition and different chemical compositions of nine kinds of coal ashes on the ash sintering temperature. The results show that the sintering temperature of WJT coal ash containing higher Fe and Ca compositions declines markedly after adding potassium carbonate catalyst. K minerals react easily with Fe and Ca minerals to produce low-melting-point eutectics, which accelerates the sintering and agglomeration. The sintering temperatures of various coal ashes are closely related to the contents of Si, Al, Fe and Ca in coal ashes. The sintering temperatures increase for the coal ash with higher content of silicon and aluminum, but decrease for the coal ash with higher content of calcium and iron in ash. Adding K catalyst can promote the slagging by forming eutectic matters, especially in the presence of calcium and iron. The three-element phase diagrams of CaO-SiO2-Al2O3, FeO-SiO2-Al2O3 could explain the sintering temperatures variance.
  • 加载中
    1. [1]

      [1] HIRSCH R L, GALLAGEHER J E, LESSARD J R, WESSELHOFT R D. Catalytic coal gasification:An emerging technology[J]. Science,1982, 215(1):121-127.

    2. [2]

      [2] NAHAS N C. Exxon catalytic coal gasification process[J]. Fuel, 1983, 62(2):239-241.

    3. [3]

      [3] 毛燕东, 李克忠, 孙志强, 毕继诚, 辛峰, 李金来. 小型流化床燃煤自供热煤催化气化特性研究[J]. 高等化学工程学报, 2013, 27(5):798-804. (MAO Yan-dong, LI Ke-zhong, SUN Zhi-qiang, BI Ji-cheng, XIN Feng, LI Jin-lai. Characteristics of catalytic coal gasification in lab scale auto thermal fluidized bed[J]. J Chem Eng Chin Univ, 2013, 27(5):798-804.)

    4. [4]

      [4] 毛燕东, 毕继诚, 李金来, 甘中学. 一种由煤催化气化制甲烷的方法:CN, 201010532452.6[P]. 2010-11-02. (MAO Yan-dong, BI Ji-cheng, LI Jin-lai, GAN Zhong-xue. A method for producing methane by catalytic gasification of coal:CN, 201010532452.6[P]. 2010-11-02.)

    5. [5]

      [5] 毛燕东, 金亚丹, 王会芳, 郑岩, 李克忠, 毕继诚. 煤催化气化工艺中碱金属腐蚀刚玉质耐火材料的实验研究[J]. 燃料化学学报, 2014, 42(11):1332-1339. (MAO Yan-dong, JIN Ya-dan, WANG Hui-fang, ZHENG Yan, LI Ke-zhong, BI Ji-cheng. Experimental research on corrosions of corundum refractory by alkali metals in catalytic coal gasification process[J]. J Fuel Chem Technol, 2014, 42(11):1332-1339.)

    6. [6]

      [6] PAN Y G, LIU M Z, JI C Y, HU M J, WANG Z. To prepare the town gas by catalytic gasification of Da-Tong coal under elevated pressure:Ⅰ. The characteristics of catalytic gasification of Da-Tong coal and its coke[J]. J East China Sch Chem Eng Technol, 1986, 12(1):25-33.

    7. [7]

      [7] NAHAS N C. Process for the catalytic gasification of coal[P]:US, 4077778. 1978-03-07.

    8. [8]

      [8] HIPPO E J, SHETH A C. Mild catalytic steam gasification process[P]:US, 2007/0000177 A1. 2007-01-04.

    9. [9]

      [9] VERAA M J, BELL A T. Effect of alkali metal catalysts on gasification of coal char[J]. Fuel, 1978, 57(4):194-200.

    10. [10]

      [10] MCKEE D W, SPIRO C L, KOSKY P G. Catalysis of coal char gasification by alkali metal salts[J]. Fuel, 1983, 62(2):217-220.

    11. [11]

      [11] YEBOAH Y D, XU Y, SHETH A C. Catalytic gasification of coal using eutectic salts:Identification of eutectics[J]. Carbon, 2003, 41(2):203-214.

    12. [12]

      [12] SHETH A C, YEBOAH Y D, GODAVARTY A, SASTRY C. Catalytic gasification of coal using eutectic salts:Reaction kinetics with binary and ternary eutectic catalysts[J]. Fuel, 2003, 82(3):305-317.

    13. [13]

      [13] SCHMITT V, KALTSCHMITT M. Effect of straw proportion and Ca and Al-containing additives on ash composition and sintering of wood-straw pellets[J]. Fuel, 2013, 109(7):551-558.

    14. [14]

      [14] LIN W, JOHANSEN K D, FRANDSEN F. Agglomeration in bio-fuel fired fluidized bed combustors[J]. Chem Eng J, 2003, 96(2):171-185.

    15. [15]

      [15] 姚冬林, 金保升, 肖刚. 生物质流化床燃烧/气化的烧结特性与机理综述[J]. 锅炉技术, 2009, 40(4):76-80. (YAO Dong-lin, JIN Bao-sheng, XIAO Gang. Review on biomass fluidized bed combustion/gasification sintering characteristic and mechanism[J]. Boiler Technol, 2009, 40(4):76-80.)

    16. [16]

      [16] KHAN A, DE J W, JANSENS P, SPLIETHOFF H. Biomass combustion in fluidized bed boilers:Potential problems and remedies[J]. Fuel Process Technol, 2009, 90(1):21-50.

    17. [17]

      [17] DEMIRBAS A. Potential applications of renewable energy sources, biomass combustion problems in boiler power systems and combustion related environmental issues[J]. Prog Energy Combust Sci, 2005, 31(2):171-192.

    18. [18]

      [18] SAMI M, ANNAMALAI K, WOOLDRIDGE M. Co-firing of coal and biomass fuel blends[J]. Prog Energy Combust Sci, 2001, 27(2):171-214.

    19. [19]

      [19] NIELSEN H, FRANDSEN F, DAM-J K, BAXTER L. The implications of chlorine associated corrosion on the operation of biomass-fired boilers[J]. Prog Energy Combust Sci, 2000, 26(3):283-298.

    20. [20]

      [20] ROMEO L M, GARETA R. Hybrid system for fouling control in biomass boilers[J]. Eng Appl Artif Intell, 2006, 19(8):915-925.

    21. [21]

      [21] EASTERLY J L, BURNHAM M. Overview of biomass and waste fuel resources for power production[J]. Biomass Bioenergy, 1996, 10(2):79-92.

    22. [22]

      [22] HEINZEL T, SIEGLE V, SPLIETHOFF H, HEIN K. Investigation of slagging in pulverized fuel co-combustion of biomass andcoal at a pilot-scale test facility[J]. Fuel Process Technol, 1998, 54(1):109-125.

    23. [23]

      [23] BARTELS M, LIN W G, NIJENHUIS J, KAPTEIJN F, OMMEN J R. Agglomeration in fluidized beds at high temperatures:Mechanisms, detection and prevention[J]. Prog Energy Combust Sci, 2008, 34(5):633-666.

    24. [24]

      [24] GUPTA S K, GUPTA R P, BRYANT G W, WALL T F. The effect of potassium on the fusibility of coal ashes with high silica andalumina levels[J]. Fuel, 1998, 77(11):1195-1201.

    25. [25]

      [25] AL-OTOOM AY, ELLIOTT L K, MOGHTADERI B, WALL T F. The sintering temperature of ash, agglomeration, and defluidisation in a bench scale PFBC[J]. Fuel, 2005, 84(1):109-114.

    26. [26]

      [26] VASSILEV S V, KUNIHIRO K, SHOHEI T. Influence of mineral and chemical composition of coal ashes on their fusibility[J]. Fuel Process Technol, 1995, 45(1):27-51.

    27. [27]

      [27] 王勤辉, 揭涛, 李小敏, 骆仲泱, 景妮洁, 岑可法. 反应气氛对不同煤灰烧结温度影响的研究[J]. 燃料化学学报, 2010,30(1):17-22. (WANG Qin-hui, JIE Tao, LI Xiao-min, LUO Zhong-yang, JING Ni-jie, CEN Ke-fa. Experiments of the effects of reaction atmosphere on coal ash sintering temperature[J]. J Fuel Chem Technol, 2010, 30(1):17-22.)

    28. [28]

      [28] JING N J, WANG Q H, YANGY K, CHENG L M, LUO Z Y, CEN K F. Influence of ash composition on the sintering behavior during pressurized combustion and gasification process[J]. Appl Phys & Eng, 2012, 13(3):230-238.

    29. [29]

      [29] 李振珠, 李风海, 薛兆民, 房倚天. 低阶煤气化结渣特性的研究进展[J]. 菏泽学院学报, 2013, 35(5):50-54. (LI Zhen-zhu, LI Feng-hai, XUE Zhao-min, FANG Yi-tian. A research progress on slagging characteristics during gasification of low-rank coal[J]. J Heze Univ, 2013, 35(5):50-54.)

    30. [30]

      [30] LUAN C, YOU C F, ZHANG D K. Composition and sintering characteristics of ashes from co-firing of coal and biomass in a laboratory-scale drop tube furnace[J]. Energy, 2014, 69(5):562-570.

    31. [31]

      [31] AL-OTOOM A Y, BRYANT G, ELLIOTT L, SKRIFVARS B, HUPA M, WALL T. Experimental options for determining the temperature for the onset of sintering of coal ash[J]. Energy Fuels, 2000, 14(1):227-233.

    32. [32]

      [32] HAYKIRIA H, YAMAN S, KUCUKBAYRAK S. Effect of biomass on temperatures of sintering and initial deformation of lignite ash[J]. Fuel, 2010, 89(10):3063-3068.

    33. [33]

      [33] WU X J, ZHANG Z X, PAOI G L, HE X, CHEN Y S, KOBAYASHI N, MORI S. Behavior of mineral matters in Chinese coal ash melting during char-CO2/H2O gasification reaction[J]. Energy Fuels, 2009, 23(5):2420-2428.

    34. [34]

      [34] VAN J C, BENSON S A, LAUMB M L, WAANDERS B. Coal and coal ash characteristics to understand mineral transformations and slag formation[J]. Fuel, 2009, 88(11):1057-1063.

    35. [35]

      [35] HFFMANU G P, HUGGINS F E, DUNMYRE G R. Investigation of the high-temperature behaviour of coal ash in reducing and oxidizing atmospheres[J]. Fuel, 1981, 60(7):585-597.

    36. [36]

      [36] RUSSELL N V, WIGLEY F, WILLIAMSON J. The roles of lime and iron oxide on the formation of ash and deposits in PF combustion[J]. Fuel, 2002, 81(5):673-681.

    37. [37]

      [37] GUPTA S K, GUPTA R P, BRYANT G W, WALL T F. The effect of potassium on the fusibility of coal ashes with high silica and alumina levels[J]. Fuel, 1998, 77(11):1195-1201.

  • 加载中
    1. [1]

      Yukai Jiang Yihan Wang Yunkai Zhang Yunping Wei Ying Ma Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033

    2. [2]

      Yanling Luo Xuejie Qi Rui Shen Xuling Peng Xiaoyan Han . Design and Implementation of Ideological and Political Education in the Physical Chemistry Course at Traditional Chinese Medicine Universities: A Case Study of the Phase Diagram of Water. University Chemistry, 2024, 39(11): 9-14. doi: 10.3866/PKU.DXHX202402003

    3. [3]

      Yang Chen Xiuying Wang Nengqin Jia . Ideological and Political Design, Blended Teaching Practice of Physical Chemistry Experiment: Pb-Sn Binary Metal Phase Diagram. University Chemistry, 2025, 40(3): 223-229. doi: 10.12461/PKU.DXHX202405184

    4. [4]

      Kun Li Na Gao Shuangyan Huan Yuzhi Wang . Design of Ideological and Political Education for the Experiment of Detecting Cadmium with Anodic Stripping Voltammetry. University Chemistry, 2024, 39(2): 155-161. doi: 10.3866/PKU.DXHX202307068

    5. [5]

      Dongqi Cai Fuping Tian Zerui Zhao Yanjuan Zhang Yue Dai Feifei Huang Yu Wang . Exploration of Factors Influencing the Determination of Ion Migration Number by Hittorf Method. University Chemistry, 2024, 39(4): 94-99. doi: 10.3866/PKU.DXHX202310031

    6. [6]

      Jiayu Tang Jichuan Pang Shaohua Xiao Xinhua Xu Meifen Wu . Improvement for Measuring Transference Numbers of Ions by Moving-Boundary Method. University Chemistry, 2024, 39(5): 193-200. doi: 10.3866/PKU.DXHX202311021

    7. [7]

      Wanchun Zhu Yongmei Liu Li Wang Yunshan Bai Shu'e Song Xiaokui Wang Zhongyun Wu Hong Yuan Yunchao Li Fuping Tian Yuan Chun Jianrong Zhang Shuyong Zhang . Suggestions on Operating Specifications of Physical Chemistry Experiment: Measurement and Control of Temperature. University Chemistry, 2025, 40(5): 128-136. doi: 10.12461/PKU.DXHX202503028

    8. [8]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    9. [9]

      Mingxin LULiyang ZHOUXiaoyu XUXiaoying FENGHui WANGBin YANJie XUChao CHENHui MEIFeng GAO . Preparation of La-doped lead-based piezoelectric ceramics with both high electrical strain and Curie temperature. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 329-338. doi: 10.11862/CJIC.20240206

    10. [10]

      Ruming Yuan Pingping Wu Laiying Zhang Xiaoming Xu Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057

    11. [11]

      Yuan Zhuang Wenhui Li Jie Li . Curriculum Reform of “Chemical Composition Analysis of Materials” under Background of First-Class Discipline Construction. University Chemistry, 2025, 40(5): 283-290. doi: 10.12461/PKU.DXHX202407070

    12. [12]

      Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440

    13. [13]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    14. [14]

      Lijun Dong Pengcheng Du Guangnong Lu Wei Wang . Exploration and Practice of Independent Design Experiments in Inorganic and Analytical Chemistry: A Case Study of “Preparation and Composition Analysis of Tetraammine Copper(II) Sulfate”. University Chemistry, 2024, 39(4): 361-366. doi: 10.3866/PKU.DXHX202310041

    15. [15]

      Pingping Zhu Qiang Zhou Yu Huang Haiyang Yang Pingsheng He Shiyan Xiao . Design and Practice of Ideological and Political Cases in the Course of Polymer Physics Experiments: Molecular Weight Determination of Polymers by Dilute Solution Viscosity Method as an Example. University Chemistry, 2025, 40(4): 94-99. doi: 10.12461/PKU.DXHX202405170

    16. [16]

      Yu Dai Xueting Sun Haoyu Wu Naizhu Li Guoe Cheng Xiaojin Zhang Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052

    17. [17]

      Yuan Zheng Quan Lan Zhenggen Zha Lingling Li Jun Jiang Pingping Zhu . Teaching Reform of Organic Synthesis Experiments by Introducing Reverse Thinking and Design Concepts: Taking the Synthesis of Cinnamic Acid Based on Retrosynthetic Analysis as an Example. University Chemistry, 2024, 39(6): 207-213. doi: 10.3866/PKU.DXHX202310065

    18. [18]

      Xuanzhu Huo Yixi Liu Qiyu Wu Zhiqiang Dong Chanzi Ruan Yanping Ren . Integrated Experiment of “Electrolytic Preparation of Cu2O and Gasometric Determination of Avogadro’s Constant: Implementation, Results, and Discussion: A Micro-Experiment Recommended for Freshmen in Higher Education at Various Levels Across the Nation. University Chemistry, 2024, 39(3): 302-307. doi: 10.3866/PKU.DXHX202308095

    19. [19]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    20. [20]

      Xiao Liu Guangzhong Cao Mingli Gao Hong Wu Hongyan Feng Chenxiao Jiang Tongwen Xu . Seawater Salinity Gradient Energy’s Job Application in the Field of Membranes. University Chemistry, 2024, 39(9): 279-282. doi: 10.3866/PKU.DXHX202306043

Metrics
  • PDF Downloads(0)
  • Abstract views(387)
  • HTML views(25)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return