Citation:
HU Shun-xuan, YU Zhong-liang, LI Chun-yu, WANG Zhi-qing, GUO Shuai, HUANG Jie-jie, FANG Yi-tian. Reaction characteristics research of coal char chemical looping gasification for hydrogen production with an Fe-Zr oxygen carrier modified by K2CO3[J]. Journal of Fuel Chemistry and Technology,
;2015, 43(4): 385-392.
-
In this study, an Fe-Zr oxide (Fe2O3 and ZrO2) modified by K2CO3 was used as the oxygen carrier (denoted as K3-Fe70Zr30) to analyze the effects of the temperature and the char mass ratio on the gas yield and composition during coal char chemical looping gasification for hydrogen production. The results of temperature-programmed experiments show that the reaction of oxygen carrier and coal char starts at 500 ℃, and the reaction rate increases sharply after 750 ℃; the reduced oxygen carrier begins to react with steam when the temperature reaches 400 ℃, and the concentration of hydrogen significantly increases after 500 ℃. The results of isothermal experiments indicate that the reaction rate accelerates with increasing reaction temperature. However, the ratio of CO/CO2 volume ratio increases, resulting in the H2 production decreases as the temperature raises. In addition, an increase in char ratio increases the ratio of CO/CO2 volume ratio in the outlet gas increases, which leads to the hydrogen production firstly increase and reaches a maximum value of 1.734 L/g, and then decrease. The activity of oxygen carrier can keep stable during the first 2 redox cycles, but it decreases in the 3rd cycle. The activity can be renewed by supplement of K2CO3, which suggests that the loss of K2CO3 can contribute to the decreased activity.
-
Keywords:
- oxygen carrier,
- K2CO3,
- coal char,
- H2 production
-
-
-
[1]
[1] 徐振刚, 吴春来. 煤气化制氢技术[J]. 低温与特气, 2000, 18(6):28-31. (XU Zhen-gang, WU Chun-lai. Technology of gasification for hydrogen production by coal[J]. J Low Temp Spec Gases, 2000, 18(6):28-31.)
-
[2]
[2] 谢继东, 李文华, 陈亚飞. 煤制氢发展现状[J]. 洁净煤技术, 2007, 13(2):77-81. (XIE Ji-dong, LI Wen-hua, CHEN Ya-fei. Development status of hydrogen production from coal[J]. J Clean Coal Technol, 2007, 13(2):77-81.)
-
[3]
[3] 任相坤, 袁明, 高聚忠. 神华煤制氢技术发展现状[J]. 煤质技术, 2006, 1:4-7. (REN Xiang-kun, YUAN Ming, GAO Ju-zhong. Development status of the technology for hydrogen production from coal in Shenhua[J]. J Coal Qual Technol, 2006, 1:4-7.)
-
[4]
[4] SHOKO E, MCLELLAN B, DICKS A L, DINIZ DA COSTA J C. Hydrogen from coal:Production and utilisation technologies[J].J Coal Geol, 2006, 65(3):213-222.
-
[5]
[5] ZENG L, HE F, LI F, FAN L. Coal-direct chemical looping gasification for hydrogen production:Reactor modeling and process simulation[J]. Energy Fuels, 2012, 26(6):3680-3690.
-
[6]
[6] FAN L, LI F, RAMKUMAR S. Utilization of chemical looping strategy in coal gasification processes[J]. Particuology, 2008, 6(3):131-142.
-
[7]
[7] CHIESA P, LOZZA G, MALANDRINO A, ROMANO M, PICCOLO V. Three-reactors chemical looping process for hydrogen production[J]. Int J Hydrogen Energy, 2008, 33(9):2233-2245.
-
[8]
[8] GNANAPRAGASAM N V, REDDY B V, ROSEN M A. Hydrogen production from coal using coal direct chemical looping and syngas chemical looping combustion systems:Assessment of system operation and resource requirements[J]. Int J Hydrogen Energy, 2009, 34(6):2606-2615.
-
[9]
[9] YANG J, CAI N, LI Z. Hydrogen production from the steam-iron process with direct reduction of iron oxide by chemical looping combustion of coal char[J]. Energy Fuels, 2008, 22(4):2570-2579.
-
[10]
[10] YU Z, LI C, FANG Y, HUANG J, WANG Z. Reduction rate enhancements for coal direct chemical looping combustion with an iron oxide oxygen carrier[J]. Energy Fuels, 2012, 26(4):2505-2511.
-
[11]
[11] YU Z, LI C, JING X, ZHANG Q, FANG Y, ZHAO J, HUANG J. Effects of CO2 atmosphere and K2CO3 addition on the reduction reactivity, oxygen transport capacity, and sintering of CuO and Fe2O3 oxygen carriers in coal direct chemical looping combustion[J]. Energy Fuels, 2013, 27(5):2703-2711.
-
[12]
[12] 余钟亮, 李春玉, 景旭亮, 丁亮, 房倚天, 黄戒介. 碳酸钾催化的铁基氧载体煤催化化学链燃烧[J]. 燃料化学学报, 2013, 41(7):826-831. (YU Zhong-liang, LI Chun-yu, JING Xu-liang, DING Liang, FANG Yi-tian, HUANG Jie-jie. Catalytic chemical looping combustion of coal with iron-based oxygen carrier promoted by K2CO3[J]. J Fuel Chem Technol, 2013, 41(7):826-831.)
-
[13]
[13] YU Z, LI C, JING X, ZHANG Q, WANG Z, FANG Y, HUANG J. Catalytic chemical looping combustion of carbon with an iron-based oxygen carrier modified by K2CO3:Catalytic mechanism and multicycle tests[J]. Fuel Process Technol,in press.
-
[1]
-
-
-
[1]
Xuejie Wang , Guoqing Cui , Congkai Wang , Yang Yang , Guiyuan Jiang , Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044
-
[2]
Jianyin He , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030
-
[3]
Linjie ZHU , Xufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207
-
[4]
Bo YANG , Gongxuan LÜ , Jiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346
-
[5]
Qiangqiang SUN , Pengcheng ZHAO , Ruoyu WU , Baoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454
-
[6]
Chenye An , Abiduweili Sikandaier , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019
-
[7]
Linjie ZHU , Xufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416
-
[8]
Jingzhuo Tian , Chaohong Guan , Haobin Hu , Enzhou Liu , Dongyuan Yang . Waste plastics promoted photocatalytic H2 evolution over S-scheme NiCr2O4/twinned-Cd0.5Zn0.5S homo-heterojunction. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-. doi: 10.1016/j.actphy.2025.100068
-
[9]
Ruiqing LIU , Wenxiu LIU , Kun XIE , Yiran LIU , Hui CHENG , Xiaoyu WANG , Chenxu TIAN , Xiujing LIN , Xiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441
-
[10]
Jingzhao Cheng , Shiyu Gao , Bei Cheng , Kai Yang , Wang Wang , Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026
-
[11]
Zongfei YANG , Xiaosen ZHAO , Jing LI , Wenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306
-
[12]
Xinghai Liu , Hongke Wu . Exploration and Practice of Ideological and Political Education in Heterocyclic Chemistry Based on "Fentanyl" Event. University Chemistry, 2024, 39(8): 359-364. doi: 10.3866/PKU.DXHX202312100
-
[13]
Xiaoxuan Yu , Wukun Liu . Practice of Ideological and Political Education in Medicinal Chemistry for Pharmacy Administration Major: A Case Study on the Discovery of Cisplatin’s Anticancer Function. University Chemistry, 2025, 40(4): 408-414. doi: 10.12461/PKU.DXHX202405200
-
[14]
Hongxia Yan , Rui Wu , Weixu Feng , Yan Zhao , Yi Yan . Innovation Inspired by Classical Chemistry: Luminescent Hyperbranched Polysiloxanes. University Chemistry, 2025, 40(4): 154-159. doi: 10.12461/PKU.DXHX202409010
-
[15]
Pengzi Wang , Wenjing Xiao , Jiarong Chen . Copper-Catalyzed C―O Bond Formation by Kharasch-Sosnovsky-Type Reaction. University Chemistry, 2025, 40(4): 239-244. doi: 10.12461/PKU.DXHX202406090
-
[16]
Guowen Xing , Guangjian Liu , Le Chang . Five Types of Reactions of Carbonyl Oxonium Intermediates in University Organic Chemistry Teaching. University Chemistry, 2025, 40(4): 282-290. doi: 10.12461/PKU.DXHX202407058
-
[17]
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
-
[18]
Mengyao Shi , Kangle Su , Qingming Lu , Bin Zhang , Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105
-
[19]
Jinfeng Chu , Yicheng Wang , Ji Qi , Yulin Liu , Yan Li , Lan Jin , Lei He , Yufei Song . Comprehensive Chemical Experiment Design: Convenient Preparation and Characterization of an Oxygen-Bridged Trinuclear Iron(III) Complex. University Chemistry, 2024, 39(7): 299-306. doi: 10.3866/PKU.DXHX202310105
-
[20]
Yang WANG , Xiaoqin ZHENG , Yang LIU , Kai ZHANG , Jiahui KOU , Linbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(510)
- HTML views(34)