Citation: LI Lin, ZHANG Lu-ming, ZHANG Yu-hua, LI Jin-lin. Effect of Ni loadings on the catalytic properties of Ni/MgO(111) catalyst for the reforming of methane with carbon dioxide[J]. Journal of Fuel Chemistry and Technology, ;2015, 43(3): 315-322. shu

Effect of Ni loadings on the catalytic properties of Ni/MgO(111) catalyst for the reforming of methane with carbon dioxide

  • Corresponding author: LI Lin,  LI Jin-lin, 
  • Received Date: 5 November 2014

    Fund Project: 国家自然科学基金青年基金(21403304)。 (21403304)

  • The catalytic properties of MgO(111) nanosheet-supported Ni were investigated for the reforming of methane with carbon dioxide with the emphasis on the effect of nickel loadings. The catalytic activity and stability increased with increasing Ni loadings from 2% to 10%, while a further increase in the Ni loading from 10% to 20% led to a negative result. The TEM, XRD, H2-TPD, TG and Raman characterization results show that the deactivation behavior of Ni/MgO(111) depends on the amount of Ni, while the Ni particle size increased with increasing Ni loadings. The deactivation of the sample with 2% of Ni was probably caused by the Ni oxidation, whereas that of the catalyst with higher content of Ni was due to the deposition of carbonaceous materials.
  • 加载中
    1. [1]

      [1] FAN M S, ABDULLAH A Z, BHATIA S. Catalytic technology for carbon dioxide reforming of methane to synthesis gas[J]. ChemCatChem, 2009, 1(2): 192-208.

    2. [2]

      [2] QIAN L, CAI W, ZHANG L, YE L, LI J, TANG M, YUE B, HE H. The promotion effect of hydrogen spillover on CH4 reforming with CO2 over Rh/MCF catalysts[J]. Appl Catal B: Environ, 2015, 164: 168-175.

    3. [3]

      [3] 王莉, 敖先权, 王诗瀚. 甲烷与二氧化碳催化重整制取合成气催化剂[J]. 化学进展, 2012, (9): 1696-1706.(WANG Li, AO Xian-quan, WANG Shi-han. Catalysts for carbon dioxide catalytic reforming of methane to synthesis gas[J]. Prog Chem, 2012, (9): 1696-1706.)

    4. [4]

      [4] SHANG R, GUO X, MU S, WANG Y, JIN G, KOSSLICK H, SCHULZ A, GUO X Y. Carbon dioxide reforming of methane to synthesis gas over Ni/Si3N4 catalysts[J]. Int J Hydrogen Energy, 2011, 36(8): 4900-4907.

    5. [5]

      [5] 瑙莫汗, 付晓娟, 雷艳秋, 苏海全. 介孔Ni-β-Mo2C/SBA-16催化剂在CH4/CO2重整制合成气反应中的催化性能[J]. 催化学报, 2013, 34(2): 379-384.(Naomohan, FU Xiao-juan, LEI Yan-qiu, SU Hai-quan. Catalytic performance of mesoporous material supported bimetallic carbide Ni-β-Mo2C/SBA-16 catalyst for CH4/CO2 reforming to syngas[J]. Chin J Catal, 2013, 34(2): 379-384.)

    6. [6]

      [6] BRADFORD M C J, VANNICE M A. CO2 reforming of CH4[J]. Cat Rev Sci Eng, 1999, 41(1): 1-42.

    7. [7]

      [7] WANG N, YU X, WANG Y, CHU W, LIU M. A comparison study on methane dry reforming with carbon dioxide over LaNiO3 perovskite catalysts supported on mesoporous SBA-15, MCM-41 and silica carrier[J]. Catal Today, 2013, 212(1): 98-107.

    8. [8]

      [8] LIU H, LI Y, WU H, TAKAYAMA H, MIYAKE T, HE D. Effects of β-cyclodextrin modification on properties of Ni/SBA-15 and its catalytic performance in carbon dioxide reforming of methane[J]. Catal Commun, 2012, 28(5): 168-173.

    9. [9]

      [9] XU W Y, XU N N, LONG W, HU L, HONG S G. Theoretical investigations of the mechanism of CO2-CH4 reforming reaction catalyzed by transition metals (Pt, Rh, Ru) under a supercritical condition[J]. Appl Mech Mater, 2013, 291-294: 795-798.

    10. [10]

      [10] XU B Q, WEI J M, WANG H Y, SUN K Q, ZHU Q M. Nano-MgO: Novel preparation and application as support of Ni catalyst for CO2 reforming of methane[J]. Catal Today, 2001, 68(1): 217-225.

    11. [11]

      [11] NANDINI A P, KAMAL K P, SUBHASH C D. Deactivation studies over Ni-K/CeO2-Al2O3 catalyst for dry reforming of methane[J]. Ind Eng Chem Res, 2007, 46(6): 1731-1736.

    12. [12]

      [12] 郭朋飞, 靳国强, 郭聪秀, 王英勇, 童希立, 郭向云. Yb2O3助剂对Ni/SiC催化剂甲烷二氧化碳重整性能的影响[J]. 燃料化学学报, 2014, 42(6): 719-726.(GUO Peng-fei, JIN Guo-qiang, GUO Cong-xiu, WANG Ying-yong, TONG Xi-li, GUO Xiang-yun. Effects of Yb2O3 promotor on theperformance of Ni/SiC catalysts in CO2 reforming of CH4[J]. J Fuel Chem Technol, 2014, 42(6): 719-726.)

    13. [13]

      [13] ANDACHE M, REZAEI M, KAZEMI MOGHADAM M. A nanocrystalline MgO support for Ni catalysts for steam reformingof CH4[J]. Chin J Catal, 2013, 34(7): 1443-1448.

    14. [14]

      [14] 杨雅仙, 秦大伟, 谢辉. MgO改性Ni/γ-Al2O3催化剂用于甲烷重整制取合成气研究[J]. 天然气化工, 2012, 37(6): 40-43.(YANG Ya-xian, QIN Da-wei, XIE Hui. Preparation of syngas by methane reforming over magnesium oxide modified nickel/γ-alumina[J]. Nat Gas Chem Ind, 2012, 37(6): 40-43.)

    15. [15]

      [15] GADDALLA A M, SOMMER M E. Carbon dioxide reforming of methane on nickel catalysts[J]. Chem Eng Sci, 1989, 44(12): 2825-2829.

    16. [16]

      [16] ASHCROFT A, CHEETHAM A, GREEN M. Partial oxidation of methane to synthesis gas using carbon dioxide[J]. Nature, 1991, 352(6332): 225-226.

    17. [17]

      [17] KIM G J, CHO D S, KIM K H, KIM J H. The reaction of CO2 with CH4 to synthesize H2 and CO over nickel-loaded Y-zeolites[J]. Catal Lett, 1994, 28(1): 41-52.

    18. [18]

      [18] ZHANG L, LI L, LI J, ZHANG Y, HU J. Carbon dioxide reforming of methane over nickel catalyst supported on MgO(111) nanosheets[J]. Top Catal, 2014, 57(6/9): 619-626.

    19. [19]

      [19] WANG Y H, LIU H M, XU B Q. Durable Ni/MgO catalysts for CO2 reforming of methane: Activity and metal-support interaction[J]. J Mol Catal A: Chem, 2009, 299(1): 44-52.

    20. [20]

      [20] XIAO H, LIU Z, ZHOU X, ZHU K. A unique method to fabricate NixMg1-xO (111) nano-platelet solid solution catalyst for CH4-CO2 dry reforming[J]. Catal Commun, 2013, 34(5): 11-15.

    21. [21]

      [21] ZHU K, HU J, KVBEL C, RICHARDS R. Efficient preparation and catalytic activity of MgO (111) nanosheets[J]. Angew Chem, 2006, 118(43): 7435-7439.

    22. [22]

      [22] PARMALIANA A, ARENA F, FRUSTERI F, GIORDANO N F. Temperature-programmed reduction study of NiO-MgO interactions in magnesia-supported Ni catalysts and NiO-MgO physical mixture[J]. J Chem Soc, Faraday Trans, 1990, 86(14): 2663-2669.

    23. [23]

      [23] ARENA F, FRUSTERI F, PARMALIANA A, PLYASOVA L, SHMAKOV A N. Effect of calcination on the structure of Ni/MgO catalyst: An X-ray diffraction study[J]. J Chem Soc, Faraday Trans, 1996, 92(3): 469-471.

    24. [24]

      [24] KIM J H, SUH D J, PARK T J, KIMA K L. Effect of metal particle size on coking during CO2 reforming of CH4 over Ni-alumina aerogel catalysts[J]. Appl Catal A: Gen, 2000, 197(2): 191-200.

    25. [25]

      [25] GONZALEZ-DELACRUZ V M, PERENIGUEZ R, TERNERO F, HOLGADO J P, CABALLERO A. In situ XAS study of synergic effects on Ni-Co/ZrO2 methane reforming catalysts[J]. J Phys Chem C, 2012, 116(4): 2919-2926.

    26. [26]

      [26] SOKOLOV S, KONDRATENKO E V, POHL M M, BARKSCHAT A, RODEMERCK U. Stable low-temperature dry reforming of methane over mesoporous La2O3-ZrO2 supported Ni catalyst[J]. Appl Catal B: Environ, 2012, 113-114: 19-30.

  • 加载中
    1. [1]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    2. [2]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    3. [3]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    4. [4]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    5. [5]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    6. [6]

      Xue Liu Lipeng Wang Luling Li Kai Wang Wenju Liu Biao Hu Daofan Cao Fenghao Jiang Junguo Li Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049

    7. [7]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    8. [8]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    9. [9]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    10. [10]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

    11. [11]

      Hao GUOTong WEIQingqing SHENAnqi HONGZeting DENGZheng FANGJichao SHIRenhong LI . Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2141-2154. doi: 10.11862/CJIC.20240085

    12. [12]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    13. [13]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    14. [14]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    15. [15]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    16. [16]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    17. [17]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    18. [18]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    19. [19]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    20. [20]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

Metrics
  • PDF Downloads(0)
  • Abstract views(572)
  • HTML views(85)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return