Citation:
XIE Deng-yin, ZHANG Su-ping, CHEN Zhi-yuan, CHEN Zhen-qi, XU Qing-li. Co and Cu modified Ni/Al2O3 steam reforming catalysts for hydrogen production from model bio-oil[J]. Journal of Fuel Chemistry and Technology,
;2015, 43(3): 302-308.
-
Ni/Al2O3 catalyst was selected as the reference catalyst for steam reforming of model bio-oil to produce hydrogen. Ni-Cu/Al2O3, Ni-Co/Al2O3 and Ni-Co-Cu/Al2O3 were prepared to investigate the influence of Co and Ni on steam reforming of bio-oil. The results show that Co can enhance the water gas shift (WGS) reaction rate, and Cu can prevent the formation of coke. The reaction conditions for the steam reforming of bio-oil with the Ni-Co-Cu/Al2O3 catalyst were optimized as the follows: temperature of 900 ℃, water-oil ratio (the mass ratio of steam to oil) of 6 g/g and weight hourly space velocity (WHSV) of 1 h-1. The carbon selectivity of 87.5%, hydrogen yield of 84.2% and potential hydrogen yield of 92.4% can be obtained at the optimum conditions.
-
Keywords:
- bio-oil,
- catalytic reforming,
- hydrogen
-
-
-
[1]
[1] PENA M A, GOMEZ J P, FIERRO J L G. New catalytic routes for syngas and hydrogen production[J]. Appl Catal A: Gen, 1996, 144(1/2): 7-57.
-
[2]
[2] 张秀梅, 陈冠益, 孟祥梅, 李新禹. 催化热解生物质制取富氢气体的研究[J]. 燃料化学学报, 2004, 32(4): 446-449.(ZHANG Xiu-mei, CHEN Guan-yi, MENG Xiang-mei, LI Xin-yu. Production of hydrogen-rich gas from biomass by catalytic pyrolysis[J]. J Fuel Chem Technol, 2004, 32(4): 446-449.)
-
[3]
[3] 郭建维, 宋晓锐, 崔英德. 流化床反应器中生物质的催化裂解气化研究[J]. 燃料化学学报, 2001, 29(4): 319-322.(GUO Jian-wei, SONG Xiao-rui, CUI Ying-de. Catalytic pyrogasification of biomass in a fluidized-bed reactor[J]. J Fuel Chem Technol, 2001, 29(4): 319-322.)
-
[4]
[4] 任辉, 张荣, 王锦凤, 孙东凯, 毕继诚. 废弃生物质在超临界水中转化制氢过程的研究[J]. 燃料化学学报, 2003, 31(6): 595-599.(REN Hui, ZHANG Rong, WANG Jin-feng, SUN Dong-kai, BI Ji-cheng. Investigation of hydrogen production from waste biomass in supercritical water[J]. J Fuel Chem Technol, 2003, 31(6): 595-599.)
-
[5]
[5] KUO J H, LIN C L, WEY M Y. Effect of agglomeration/defluidization on hydrogen generation during fluidized bed air gasification of modified biomass[J]. Int J Hydrogen Energy, 2012, 37(2): 1409-1417.
-
[6]
[6] BORGOGNONI F, TOST S, VADRUCCI M, SANTUCCI A. Combined methane and ethanol reforming for pure hydrogen production through Pd-based membranes[J]. Int J Hydrogen Energy, 2013, 38(3): 1430-1438.
-
[7]
[7] GARCIA L, FRENCH R, CZERNIK S. Catalytic steam reforming of bio-oils for the production of hydrogen: Effects of catalyst composition[J]. Appl Catal A: Gen, 2000, 201(2): 225-239.
-
[8]
[8] AZAD F S, ABEDI J, SALEHI E, HARDING T. Production of hydrogen via steam reforming of bio-oil over Ni-based catalysts: Effect of support[J]. Chem Eng J, 2012, 180(15): 145-150.
-
[9]
[9] YAN C F, CHENG F F, HU R R. Hydrogen production from catalytic steam reforming of bio-oil aqueous fraction over Ni/CeO2-ZrO2 catalysts[J]. Int J Hydrogen Energy, 2010, 35(21): 11693-11699.
-
[10]
[10] 王兆祥, 朱锡锋, 潘越, 李全新. C12A7-K2O催化水蒸气重整生物油制氢[J]. 中国科学技术大学学报, 2006, 36(4): 458-460.(WANG Zhao-xiang, ZHU Xi-feng, PAN Yue, LI Quan-xin. Hydrogen production from steam reforming of bio-oil with C12A7-K2O catalyst[J]. J Univ Sci Technol Chin, 2006, 36(4): 458-460.)
-
[11]
[11] IWASA N, YAMANE T, ARAI M. Influence of alkali metal modification and reaction conditions on the catalytic activity and stability of Ni containing smectite-type material for steam reforming of acetic acid[J]. Int J Hydrogen Energy, 2011, 36(10): 5904-5911.
-
[12]
[12] GARBARINO G, LAGAZZO A, RIANI P, BUSCA G. Steam reforming of ethanol-phenol mixture on Ni/Al2O3: Effect of Ni loading and sulphur deactivation[J]. Appl Catal B: Environ, 2013, 129: 460-472.
-
[13]
[13] HU X, LU G X. Comparative study of alumina-supported transition metal catalysts for hydrogen generation by steam reforming of acetic acid[J]. Appl Catal B: Environ, 2010. 99(1/2): 289-297.
-
[14]
[14] REMON J, MEDRANO J A, BIMBELA F, GARCIA L, ARAUZO J. Ni/Al-Mg-O solids modified with Co or Cu for the catalytic steam reforming of bio-oil[J]. Appl Catal B: Environ, 2013, 132-133: 433-444.
-
[15]
[15] MEDRANO J A, OLIVA M, RUIZ J, GARCIA L, ARAUZO J. Hydrogen from aqueous fraction of biomass pyrolysis liquids by catalytic steam reforming influidized bed[J]. Energy, 2011, 36(4): 2215-2224.
-
[16]
[16] MEDRANO J A, OLIVA M, RUIZ J, GARCIA L, ARAUZO J. Catalytic steam reforming of model compounds of biomass pyrolysis liquids in fluidized bed reactor with modified Ni/Al catalysts[J]. J Anal Appl Pyrolysis, 2009, 85(1/2): 214-225.
-
[17]
[17] BASAGIANNIS A C, VERYKIOS X E. Catalytic steam reforming of acetic acid for hydrogen production[J]. Int J Hydrogen Energy, 2007, 32(15): 3343-3355.
-
[18]
[18] FURUSAWA T, SAITO K, KORI Y, MIURA Y, SATO M, SUZUKI N. Steam reforming of naphthalene/benzene with various types of Pt- and Ni-based catalysts for hydrogen production[J]. Fuel, 2013, 103: 111-121.
-
[19]
[19] PANT K K, MOHANTY P, AGARWAL S, DALAI A K. Steam reforming of acetic acid for hydrogen production over bifunctional Ni-Co catalysts[J]. Catal Today, 2013, 207: 36-43.
-
[20]
[20] HU X, LU G. Investigation of steam reforming of acetic acid to hydrogen over Ni-Co metal catalyst[J]. J Mol Catal A: Chem, 2007, 261(1): 43-48.
-
[21]
[21] RIOCHE C, KULKARNI S, MEUNIER F C, JOHN P B, BURCH R. Steam reforming of model compounds and fast pyrolysis bio-oil on supported noble metal catalysts[J]. Appl Catal B: Environ, 2005, 61(1/2): 130-139.
-
[22]
[22] BIMBELA F, CHEN D, RUIZ J, GARCIA L, ARAUZO J. Ni/Al coprecipitated catalysts modified with magnesium and copper for the catalytic steam reforming of model compounds from biomass pyrolysis liquids[J]. Appl Catal B: Environ, 2012, 119-120: 1-12.
-
[23]
[23] ECHEGOYEN Y, SUELVES I, LAZARO M J, SANJUAN M L, MOLINER R. Thermo catalytic decomposition of methane over Ni-Mg and Ni-Cu-Mg catalysts Effect of catalyst preparation method[J]. Appl Catal A: Gen, 2007, 333(2): 229-237.
-
[24]
[24] HU X, LU G. Comparative study of alumina supported transition metal catalysts for hydrogen generation by steam reforming of acetic acid[J]. Appl Catal B: Environ, 2010, 99(1/2): 289-297.
-
[25]
[25] PINTO F, FRANCO C, ANDRE R N, TAVARES C, DIAS M, GULYURTLU I. Effect of experimental conditions on co-gasification of coal, biomass and plastics wastes with air/steam mixtures in a fluidized bed system[J]. Fuel, 2003, 82(15/17): 1967-1976.
-
[26]
[26] WANG J B, CHENG G, YOU Y L, XIAO B, LIU S, HE P, GUO D, GUO X J, ZHANG G J. Hydrogen-rich gas production by steam gasification of municipal solid waste(MSW) using NiO supported on modified dolomite[J]. Int J Hydrogen Energy, 2012, 37(8): 6503-6510.
-
[27]
[27] GOYAL N, PANT K K, GUPTA R. Hydrogen production by steam reforming of model bio-oil using structured Ni/Al2O3 catalysts[J]. Int J Hydrogen Energy, 2013, 38(2): 921-933.
-
[28]
[28] SEYEDEYN-AZAD F, SALEHI E, ABEDI J, HARDING T. Biomass to hydrogen via catalytic steam reforming of bio-oil over Ni-supported alumina catalysts[J]. Fuel Process Technol, 2011, 92(3): 563-569.
-
[1]
-
-
-
[1]
Tongtong Zhao , Yan Wang , Shiyue Qin , Liang Xu , Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003
-
[2]
Qin Hu , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024
-
[3]
Yuchen Zhou , Huanmin Liu , Hongxing Li , Xinyu Song , Yonghua Tang , Peng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067
-
[4]
Xue Liu , Lipeng Wang , Luling Li , Kai Wang , Wenju Liu , Biao Hu , Daofan Cao , Fenghao Jiang , Junguo Li , Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049
-
[5]
Dan Li , Hui Xin , Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046
-
[6]
Zhaoxin LI , Ruibo WEI , Min ZHANG , Zefeng WANG , Jing ZHENG , Jianbo LIU . Advancements in the construction of inorganic protocells and their cell mimic and bio-catalytical applications. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2286-2302. doi: 10.11862/CJIC.20240235
-
[7]
Yurong Tang , Yunren Shi , Yi Xu , Bo Qin , Yanqin Xu , Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087
-
[8]
. . Chinese Journal of Inorganic Chemistry, 2024, 40(12): 0-0.
-
[9]
Haitang WANG , Yanni LING , Xiaqing MA , Yuxin CHEN , Rui ZHANG , Keyi WANG , Ying ZHANG , Wenmin WANG . Construction, crystal structures, and biological activities of two LnⅢ3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188
-
[10]
Xiaowei TANG , Shiquan XIAO , Jingwen SUN , Yu ZHU , Xiaoting CHEN , Haiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173
-
[11]
Jianfeng Yan , Yating Xiao , Xin Zuo , Caixia Lin , Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005
-
[12]
Zhibei Qu , Changxin Wang , Lei Li , Jiaze Li , Jun Zhang . Organoid-on-a-Chip for Drug Screening and the Inherent Biochemistry Principles. University Chemistry, 2024, 39(7): 278-286. doi: 10.3866/PKU.DXHX202311039
-
[13]
Yang Liu , Peng Chen , Lei Liu . Chemistry “101 Plan”: Design and Construction of Chemical Biology Textbook. University Chemistry, 2024, 39(10): 45-51. doi: 10.12461/PKU.DXHX202407085
-
[14]
Tianyu Feng , Guifang Jia , Peng Zou , Jun Huang , Zhanxia Lü , Zhen Gao , Chu Wang . Construction of the Chemistry Biology Experiment Course in the Chemistry “101 Program”. University Chemistry, 2024, 39(10): 69-77. doi: 10.12461/PKU.DXHX202409002
-
[15]
Jinghan ZHANG , Guanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249
-
[16]
Lina Feng , Guoyu Jiang , Xiaoxia Jian , Jianguo Wang . Application of Organic Radical Materials in Biomedicine. University Chemistry, 2025, 40(4): 253-260. doi: 10.12461/PKU.DXHX202405171
-
[17]
Siran Wang , Yinuo Wang , Yilong Zhao , Dazhen Xu . Advances in the Application and Preparation of Rhodanine and Its Derivatives. University Chemistry, 2025, 40(5): 318-327. doi: 10.12461/PKU.DXHX202407033
-
[18]
Kuaibing Wang , Feifei Mao , Weihua Zhang , Bo Lv . Design and Practice of a Comprehensive Teaching Experiment for Preparing Biomass Carbon Dots from Rice Husk. University Chemistry, 2025, 40(5): 342-350. doi: 10.12461/PKU.DXHX202407042
-
[19]
Wei HE , Jing XI , Tianpei HE , Na CHEN , Quan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364
-
[20]
Xinyi Hong , Tailing Xue , Zhou Xu , Enrong Xie , Mingkai Wu , Qingqing Wang , Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(508)
- HTML views(58)