Citation: ZHANG Tian-kai, ZHANG Yong-fa, WANG Qi, ZHANG Jing, DING Xiao-kuo. Hydrogasification of lignite semicoke to produce methane and the textural properties of coke residues[J]. Journal of Fuel Chemistry and Technology, ;2015, 43(3): 289-301. shu

Hydrogasification of lignite semicoke to produce methane and the textural properties of coke residues

  • Corresponding author: ZHANG Yong-fa, 
  • Received Date: 7 August 2014

    Fund Project: 国家重点基础研究发展规划(973计划, 2012CB723105)。 (973计划, 2012CB723105)

  • The hydrogasification of Inner Mongolia lignite semicoke to produce methane was investigated in a high-temperature and high-pressure (1 000 ℃, 12 MPa) fixed bed reactor; the specific surface area, pore structure and surface feature of the coke residues were characterized by nitrogen physisorption and scanning electron microscope (SEM). The results showed that the hydrogasification process of semicoke can be divided into three stages, viz., hydropyrolysis, rapid hydrogenation and slow hydrogenation, in which the hydrogenation of oxygen-containing functional group and alkyl side chain, the hydrogenation of aromatic structure, and the hydrogenation of hydrogen depleted carbon skeleton structure take place successively. The optimum reaction temperature and pressure for the semicoke hydrogasification are 800 ℃ and 3.0~4.0 MPa, respectively. An increase of heating rate may shorten the reaction time of earlier hydrogasification stage with a carbon conversion below 46%, but has little effect on the later stage with a carbon conversion above 46%. The nitrogen physisorption of the coke residues exhibits a reversed S-shape isotherm with a H3 hysteresis loop. Along with the progress of hydrogasification, the average pore size of semicoke decreases first and then increases, the total pore volume and mesopore volume increase gradually, whereas the micropore volume and specific surface area increase first and then decrease.
  • 加载中
    1. [1]

      [1] 杨允明, 沙兴中, 任德庆. 煤的加氢气化研究[J]. 煤炭转化, 1992, 15(1): 60-67.(YANG Yun-ming, SHA Xing-zhong, REN De-qing. Study of hydrogasification of coal[J]. Coal Convers, 1992, 15(1): 60-67.)

    2. [2]

      [2] 杨允明, 沙兴中, 任德庆. 煤和煤焦在压力下加氢气化的动力学研究I. 温度的影响[J]. 华东化工学院学报, 1988, 14(4): 500-504.(YANG Yun-ming, SHA Xing-zhong, REN De-qing. Kinetics of hydrogasification of coal and char at pressure I. Influence of temperature[J]. J East Chin Inst Chem Technol, 1988, 14(4): 500-504.)

    3. [3]

      [3] 马智华, 王欣荣, 朱子彬, 唐黎华, 倪燕慧, 张成芳. 烟煤快速加氢热解的研究Ⅱ. 温度和压力影响的考察[J]. 燃料化学学报, 1996, 24(5): 40-44.(MA Zhi-hua, WANG Xin-rong, ZHU Zi-bin, TANG Li-hua, NI Yan-hui, ZHANG Cheng-fang. Study on flash hydropyrolysis of bituminous coal Ⅱ. Effect of temperature and pressure[J]. J Fuel Chem Technol, 1996, 24(5): 40-44.)

    4. [4]

      [4] 刘保林, 崔彦亭, 何伯述. 加氢气化炉内化学反应的热力学研究[J]. 洁净煤技术, 2006, 12(2): 67-71.(LIU Bao-lin, CUI Yan-ting, HE Bo-shu. Thermodynamic based analysis of the chemical reactions in a hydrogasifier[J]. Clean Coal Technol, 2006, 12(2): 67-71.)

    5. [5]

      [5] WANG S C, BAEK H I, JANG H T. Hydrogasification of various carbonaceous sources using pressure change properties[J]. Korean J Chem Eng, 2007, 24(3): 532-536.

    6. [6]

      [6] 战书鹏, 王兴军, 洪冰清, 于广锁, 王辅臣. 褐煤催化加氢气化实验研究[J]. 燃料化学学报, 2012, 40(1): 8-14.(ZHAN Shu-peng, WANG Xing-jun, HONG Bing-qing, YU Guang-suo, WANG Fu-chen. Experimental study on catalytic hydrogasification of lignite[J]. J Fuel Chem Technol, 2012, 40(1): 8-14.)

    7. [7]

      [7] LEE S H, LEE J G, KIM J H, CHOI Y C. Hydrogasification characteristics of bituminous coals in an entrained-flow hydrogasifier[J]. Fuel, 2006, 85(5): 803-806.

    8. [8]

      [8] YASUDA H, YAMADA O, ZHANG A, NAKANO K, KAIHO M. Hydrogasification of coal and polyethylene mixture[J]. Fuel, 2004, 83(17): 2251-2254.

    9. [9]

      [9] GONZLEZ J F, RAMIRO A, SABIO E, ENCINAR J M, GONZALEZ C M. Hydrogasification of almond shell chars. Influence of operating variables and kinetic study[J]. Ind Eng Chem Res, 2002, 41(15): 3557-3565.

    10. [10]

      [10] YASUDA H, YAMADA O, KAIHO M, NAKAGOME H. Effect of polyethylene addition to coal on hydrogasification enhancement[J]. J Mater Cycles Waste Manage, 2014, 16(1): 151-155.

    11. [11]

      [11] ZHOU Y, ZHENG Y, WANG W X, ZHENG C G. An experimental investigation on hydrogasification of coal chars in a fixed bed reactor under high pressure[J]. Adv Mater Res, 2012, 524: 863-870.

    12. [12]

      [12] JEON S K, PARK C S, HACKETT C E, NORBECK J M. Characteristics of steam hydrogasification of wood using a micro-batch reactor[J]. Fuel, 2007, 86(17): 2817-2823.

    13. [13]

      [13] TOMITA A, MAHAJAN O P, WALKER P L. Reactivity of heat-treated coals in hydrogen[J]. Fuel, 1977, 56(2): 137-144.

    14. [14]

      [14] ZHANG J, DING H R, WANG J. Methane production by hydrogenation of low-rank coal in a fixed-bed reactor[J]. Pittsburgh, 2013, 30(2): 1186-1191.

    15. [15]

      [15] 杨景标, 郑炯. 微观结构对煤焦气化反应性的影响[J]. 化学工程与装备, 2009, 5: 33-37.(YANG Jing-biao, ZHENG Jiong. Effect of microstructure on coke gasification reactivity[J]. Chem Eng Equipm, 2009, 5: 33-37.)

    16. [16]

      [16] TAKARADA T, TAMAI Y, TOMITA A. Reactivities of 34 coals under steam gasification[J]. Fuel, 1985, 64(10): 1438-1442.

    17. [17]

      [17] BLACKWOOD J D. The reaction of carbon with hydrogen at high pressure[J]. Aust J Chem, 1959, 12(1): 14-28.

    18. [18]

      [18] KARCZ A, PORADA S. The influence of coal rank on formation of gaseous hydrocarbons in hydrogasification of coal[J]. Fuel, 1996, 75(5): 641-645.

    19. [19]

      [19] SCHRADER L, 杨继涛. 煤的加氢气化[J]. 煤炭转化, 1981, 4: 64-74.(SCHRADER L, YANG Ji-tao. Coal hydrogasification[J]. Coal Convers, 1981, 4: 64-74.)

    20. [20]

      [20] 张永发, 张天开, 丁晓阔, 徐英, 陈磊, 李香兰. 一种低阶煤制甲烷工艺: 中国, 102911756A[P]. 2013-02-06.(ZHANG Yong-fa, ZHANG Tian-kai, DING Xiao-kuo, XU Ying, CHEN Lei, LI Xiang-lan. Process for producing methane from low-rank coal: CN, 102911756A[P]. 2013-02-06.)

    21. [21]

      [21] 张永发, 陈磊, 武云霞, 唐健, 丁晓阔, 张天开, 孙亚玲. 一种载热气体用于煤的热解装置: 中国, 102911677A[P]. 2013-02-06.(ZHANG Yong-fa, CHEN Lei, WU Yun-xia, TANG Jian, DING Xiao-kuo, ZHANG Tian-kai, SUN Ya-ling. A gas heating apparatus for the pyrolysis of coal: CN, 102911677A[P]. 2013-02-06.)

    22. [22]

      [22] 张永发, 王影, 丁晓阔, 张国杰, 孙亚玲. 一种制备甲烷化炭材料的方法: 中国, 102676190A[P]. 2012-09-19.(ZHANG Yong-fa, WANG Ying, DING Xiao-kuo, ZHANG Guo-jie, SUN Ya-ling. A method for the preparation of methane carbon material: CN, 102676190A[P]. 2012-09-19.)

    23. [23]

      [23] 董跃, 张丙模, 赵文军, 王莉萍, 张国杰, 张永发. 煤制甲烷小型高温高压反应器的研究和开发[J]. 煤炭转化, 2010, 33(2): 64-67+71.(DONG Yue, ZHANG Bing-mu, ZHAO Wen-jun, WANG Li-ping, ZHANG Guo-jie, ZHANG Yong-fa. Research and development of a small-scale high-temperature and high-pressure reactor for coal methanation[J]. Coal Convers, 2010, 33(2): 64-67+71.)

    24. [24]

      [24] DING X K, ZHANG Y F, ZHANG T K, TANG J, XU Y, ZHANG J. Effect of operational variables on the hydrogasification of Inner Mongolian lignite semicoke[J]. Energy Fuels, 2013, 27(8): 4589-4597.

    25. [25]

      [25] 孙庆雷, 王晓, 刘建华, 程传格, 李文, 李保庆. 煤加氢气化过程热力学研究[J]. 山东科技大学学报(自然科学版), 2004, 23(4): 27-29+38.(SUN Qing-lei, WANG Xiao, LIU Jian-hua, CHENG Chuan-ge, LI Wen, LI Bao-qing. The thermodynamic study on hydrogasification process of coal[J]. J Shandong Univ Sci Technol (Nat Sci), 2004, 23(4): 27-29+38.)

    26. [26]

      [26] 李保庆. 煤加氢热解研究: I 宁夏灵武煤加氢热解的研究[J]. 燃料化学学报, 1995, 23(1): 57-61.(LI Bao-qing. Hydropyrolysis of Chinese coals: I Hydropyrolysis of Lingwu bituminous coal[J]. J Fuel Chem Technol, 1995, 23(1): 57-61.)

    27. [27]

      [27] 徐泽夕, 吴晋沪, 王洋, 张东柯. 甲烷在褐煤煤焦上的裂解反应研究[J]. 燃料化学学报, 2009, 37(3): 277-281.(XU Ze-xi, WU Jin-hu, WANG Yang, ZHANG Dong-ke. Methane cracking over lignite char[J]. J Fuel Chem Technol, 2009, 37(3): 277-281.)

    28. [28]

      [28] CYPRES R, BETTENS B. La formation de la plupart des composes aromatiques produits lors de la pyrolyse du phenol, ne fait pas intervenir le carbone porteur de la function hydroxyle[J]. Tetrahedron, 1975, 31(4): 359-365.

    29. [29]

      [29] 李保庆. 我国煤加氢热解研究II. 先锋褐煤加氢及催化加氢热解的热重研究[J]. 燃料化学学报, 1995, 23(2): 186-191.(LI Bao-qing. Hydropyrolysis of Chinese coals II. Thermogravimetric study on catalytic and non-catalytic hydropyrolysis of xianfeng lignite[J]. J Fuel Chem Technol, 1995, 23(2): 186-191.)

    30. [30]

      [30] 步学明, 于涌年, 逄进. 煤炭加氢气化的研究[J]. 煤气与热力, 1989, 5: 4-11+2.(BU Xue-ming, YU Yong-nian, PANG Jin. The study of coal hydrogasification[J]. Gas Heat, 1989, 5: 4-11+2.)

    31. [31]

      [31] 杨允明, 沙兴中, 任德庆. 煤和煤焦压力下加氢气化动力学的研究[J]. 煤气与热力, 1989, 4: 4-10+2.(YANG Yun-ming, SHA Xing-zhong, REN De-qing. Research hydrogenation of coal and coal char gasification kinetics under pressure[J]. Gas Heat, 1989, 4: 4-10+2.)

    32. [32]

      [32] MISIRLIOGLU Z, CANEL M, SINAG A. Hydrogasification of chars under high pressures[J]. Energy Convers Manage, 2007, 48(1): 52-58.

    33. [33]

      [33] 徐英, 张永发, 张国杰, 陈磊, 李香兰. 褐煤低温热解气生成特性的研究[J]. 太原理工大学学报, 2013, 44(4): 414-416+421.(XU Ying, ZHANG Yong-fa, ZHANG Guo-jie, CHEN Lei, LI Xiang-lan. The pyrolysis gas properties from lignite[J]. J Taiyuan Univ Technol, 2013, 44(4): 414-416+421.)

    34. [34]

      [34] BAKER D C. Lignite hydrogasification kinetics[D]. Lubbock: Texas Tech University, 1984.

    35. [35]

      [35] GAN H, NANDI S P, WALKER P L Jr. Nature of the porosity in American coals[J]. Fuel, 1972, 51(4): 272-277.

  • 加载中
    1. [1]

      Xia Shu Longtian Sima Jiali Wang Jiacheng Chu Xieyidai·Yusunjiang Mubareke·Maimaitijiang Yingwei Lu Yan Wang . Analysis of the Report Generated by the QuadraSorb evo BET Surface Area Analyzer. University Chemistry, 2025, 40(5): 391-400. doi: 10.12461/PKU.DXHX202411013

    2. [2]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    3. [3]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    4. [4]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    5. [5]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    6. [6]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    7. [7]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    8. [8]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    9. [9]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    10. [10]

      Hexing SONGZan SUN . Synthesis, crystal structure, Hirshfeld surface analysis, and fluorescent sensing for Fe3+ of an Mn(Ⅱ) complex based on 1-naphthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 885-892. doi: 10.11862/CJIC.20240402

    11. [11]

      Yuan Chun Yongmei Liu Fuping Tian Hong Yuan Shu'e Song Wanchun Zhu Yunchao Li Zhongyun Wu Xiaokui Wang Yunshan Bai Li Wang Jianrong Zhang Shuyong Zhang . Suggestions on Operating Specifications of Physical Chemistry Experiment: Measurement of Colloidal and Surface Chemical Properties, Molecular Structure and Properties. University Chemistry, 2025, 40(5): 178-188. doi: 10.12461/PKU.DXHX202503053

    12. [12]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    13. [13]

      Haiyu Zhu Zhuoqun Wen Wen Xiong Xingzhan Wei Zhi Wang . 二维半金属/硅异质结中肖特基势垒高度的准确高效预测. Acta Physico-Chimica Sinica, 2025, 41(7): 100078-. doi: 10.1016/j.actphy.2025.100078

    14. [14]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    15. [15]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    16. [16]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    17. [17]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    18. [18]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    19. [19]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    20. [20]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

Metrics
  • PDF Downloads(0)
  • Abstract views(447)
  • HTML views(25)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return