Citation:
JI Huai-jun, LI Zeng-hua, YANG Yong-liang, LIU Zhen, WANG Run. Effect of small organic molecule in mid-metamorphism coal on gas adsorption and flow characteristics[J]. Journal of Fuel Chemistry and Technology,
;2015, 43(3): 281-288.
-
Two bituminous coals were extracted with tetrahydrofuran (THF) solvent at 50 ℃ and atmospheric pressure by microwave-assisted extraction. The experiments of methane sorption isotherms, desorption and radial seepage for raw coals and their residues were carried out. The results indicate that the ability to adsorb methane is reduced after extraction of the small organic molecule, and the methane desorption rate is improved. Pore volume and average pore diameter of raw coal is higher than that of the residual coal,while the specific surface area and micropore volume are reduced. After solvent extraction, the desorption velocity and desorption quantity are higher that of raw coal because the resistances of surface mass transfer and diffusion are reduced. Permeability of residues is higher than that of raw coal under the same seepage condition. The gas adsorption is lowered, the internal and external diffusion resistance of methane is decreased, and the gas flow channel in coal is expanded. These behaviors are caused by the change of coal pore structure after dissolving some small organic molecule in coal. Therefore, solvent extraction can change the storage and transportation of coal seam features, which provides the basis for improving the permeability of the coal reservoir with chemical methods.
-
Keywords:
- methane,
- small organic molecule,
- adsorption,
- diffusion resistance,
- permeability
-
-
-
[1]
[1] MARZEC A. Towards an understanding of the coal structure: A review[J]. Fuel Proces Technol, 2002, 77-78: 25-32.
-
[2]
[2] KRZESINSKA M. Coal structure studied by means of molecular acoustics methods[J]. Fuel Proces Technol, 2002, 77-78: 33-43.
-
[3]
[3] RUS' IANOVA N D, MAKSIMOVA N E, JDANOV V S, BUTAKOVA V I. Structure and reactivity of coals[J]. Fuel, 1990, 69(11): 1448-1453.
-
[4]
[4] CHEN C, IINO M. Insight into the aggregation of coal derived material in solvent-An observation by size exclusion chromatography [J]. Fuel, 2001, 80(7): 929-936.
-
[5]
[5] 陈红, 葛岭梅, 李建伟. 微波辅助抽提煤的条件优化及抽提物和残煤的分析[J]. 煤炭学报, 2009, 34(4): 546-550.(CHEN Hong, GE Ling-mei, LI Jian-wei. Optimization of microwave-assisted extraction coal and analysis of soluble fraction and residue[J]. J Chin Coal Soc, 2009, 34 (4): 546- 550.)
-
[6]
[6] TAKANOHASHI T, TERAO Y, IINO M. Sorption behaviors of methanol vapor by coal extracts and residues[J]. Fuel, 2000, 79(3): 349-353.
-
[7]
[7] 张代钧, 王飞, 李小鹏, 鲜学福. 溶剂萃取对烟煤孔隙结构和粒度的影响[J]. 燃料化学学报, 2004, 32(1): 18-22.(ZHANG Dai-jun, WANG Fei, LI Xiao-peng, XIAN Xue-fu. Effect of solvent extraction on pore character and granularity of bituminous coal[J]. J Fuel Chem Technol, 2004, 32(1): 18-22.)
-
[8]
[8] 王飞, 张代钧, 李小鹏, 杨明莉. 煤及其溶剂萃取产物的氮气吸附行为[J]. 燃料化学学报, 2003, 31(5): 395-399.(WANG Fei, ZHANG Dai-jun, LI Xiao-peng, YANG Ming-li. Adsorption behaviors for nitrogen by coal, its extractions and residues [J ]. J Fuel Chem Technol, 2003,31(5): 395-399.)
-
[9]
[9] 降文萍. 溶剂萃取前后煤吸附甲烷特征对比及机理研究[J]. 煤炭科学技术, 2013, 41(3): 114-119.(JIANG Wen-ping. Study on features comparison and mechanism of methane adsorbed bycoal before and after solvent extraction [J]. Coal Sci Technol, 2013, 41(3): 114-119.)
-
[10]
[10] JI H J, LI Z H, PENG Y J, YANG Y L, TANG Y B, LIU Z. Pore structures and methane sorption characteristics of coal after extraction with tetrahydrofuran[J]. J Nat Gas Sci Eng, 2014,19: 287-294.
-
[11]
[11] 刘彦伟. 煤粒瓦斯放散规律, 机理与动力学模型研究[D]. 焦作: 河南理工大学, 2011: 31-32.(LIU Yan-wei. Study on gas emission rules, mechanism and dynamic model from coal particle[D]. Jiaozuo: Henan Polytechnic University, 2011: 31-32.)
-
[12]
[12] 刘震. 水力化钻孔径向瓦斯渗流特性实验研究与应用[D]. 徐州: 中国矿业大学, 2014: 23-24.(LIU Zhen. Experimental study and application of radial gas-flow-characteristics around hydraulic borehole[D]. Xuzhou: China University of Mining and Technology, 2014: 23-24.)
-
[13]
[13] 刘震, 李增华, 杨永良, 杨继超, 季淮君. 卸压边界区径向瓦斯渗流特性试验研究[J]. 煤炭学报, 2014, 39(1): 104-109.(LIU Zhen, LI Zeng-hua, YANG Yong-liang, YANG Ji-chao, JI Huai-jun. Experimental study of radial gas seepage characteristics in stress-relief boundary area[J]. J China Coal Soc, 2014, 39(1): 104-109.)
-
[14]
[14] 刘震, 李增华, 杨永良, 季淮君. 水分对煤体瓦斯吸附及径向渗流影响试验研究[J]. 岩石力学与工程学报, 2014, 33(3): 159-166.(LIU Zhen, LI Zeng-hua, YANG Yong-liang, JI Huai-jun. Experimental study of effect of water on sorption and radial gas seepage of coal[J]. Chin J Rock Mech Eng, 2014, 33(3): 159-166.)
-
[15]
[15] 张小东, 秦勇, 王桑勋. 不同煤级煤及其萃余物吸附性能的研究[J]. 地球化学, 2006, 35(5): 567-574.(ZHANG Xiao-dong, QIN Yong, WANG Sang-xun. Adsorption capacity of different metamorphism coals and their residues[J]. Geochim, 2006, 35(5): 567-574.)
-
[16]
[16] 杨其銮, 王佑安. 煤屑瓦斯扩散理论及其应用[J]. 煤炭学报, 1986, 11(3): 87-94.(YANG Qi-luan, WANG You-an. Theory of methane diffusion from coal cuttings and its application[J]. J China Coal Soc, 1986, 11(3): 87-94.)
-
[17]
[17] 张飞燕, 韩颖. 煤屑瓦斯扩散规律研究[J]. 煤炭学报, 2013, 38(9): 1589-1596.(ZHANG Fei-yan, HAN Ying. Research on the law of gas diffusion from drill cuttings[J]. J China Coal Soc, 2013, 38(9): 1589-1596.)
-
[18]
[18] 聂百胜, 郭勇义, 吴世跃, 张力. 煤粒瓦斯扩散的理论模型及其解析[J]. 中国矿业大学学报, 2001, 30(1): 19-22.(NIE Bai-sheng, GUO Yong-yi, WU Shi-yue, ZHANG Li. Theoretical model of gas diffusion through coal particles and its analytical solution[J]. J China Univ Min Technol, 2001, 30(1): 19-22.)
-
[19]
[19] 高家锐. 动量、热量、质量传输定理[M]. 重庆: 重庆大学出版社, 1987: 329-357.(GAO Jia-rui. Momentum, heat and masstransfer theorem[M]. Chongqing: Chongqing University Press, 1987: 329-357.)
-
[20]
[20] 周世宁, 林柏泉. 煤层瓦斯赋存与流动理论[M]. 北京: 煤炭工业出版社, 1997: 38-40.(ZHOU Shi-ning, LIN Bai-quan. The theory of gas flow and storage in coal seams[M]. Beijing: China Coal Industry Publishing House, 1997: 38-40.)
-
[21]
[21] 曹树刚, 郭平, 李勇, 白燕杰, 刘延保, 徐建. 瓦斯压力对原煤渗透特性的影响[J]. 煤炭学报, 2010, 35(4): 595-599.(CAO Shu-gang, GUO Ping, LI Yong, BAI Yan-jie, LIU Yan-bao, XU Jian. Effect of gas pressure on gas seepage of outburst coal[J]. J Chin Coal Soc, 2010, 35(4): 595-599.)
-
[22]
[22] 秦匡宗, 郭绍辉. 煤结构的新概念与煤成油机理的再认识[J]. 科学通报, 1998, 43(18): 1912-1918.(QIN Kuang-zong, GUO Shao-hui. The new concept of coal structure and the mechanism of coal formed oil[J]. Chin Sci Bull, 1998, 43(18): 1912-1918.)
-
[23]
[23] 秦志宏, 侯翠利, 张迪, 丁曙光, 孙昊, 江春. 煤中小分子的微孔嵌入特征与溶出特性[J]. 中国矿业大学学报, 2007, 36(5): 586-591.(QIN Zhi-hong, HOU Cui-li, ZHANG Di, DING Shu-guang, SUN Hao, JIANG Chun. Characteristics of micropore-inbuilt form of micromolecules in coal and their solubilization rules[J]. J Chin Univ Min Technol, 2007, 36(5): 586-591.)
-
[24]
[24] ALEXEEV A D, ULYANOVA E V, STARIKOV G P, KOVRIGA N N. Latent methane in fossil coals[J]. Fuel, 2004, 83(10): 1407-1411.
-
[25]
[25] ALEXEEV A D, VASYLENKO T A, ULYANOVA E V. Phase states of methane in fossil coals[J]. Solid State Commun, 2004, 130(10): 669-673.
-
[26]
[26] NISHINO J. Adsorption of water vapor and carbon dioxide at carboxylic functional groups on the surface of coal[J]. Fuel, 2001, 80(5): 757-764.
-
[1]
-
-
-
[1]
Fugui XI , Du LI , Zhourui YAN , Hui WANG , Junyu XIANG , Zhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291
-
[2]
Jingke LIU , Jia CHEN , Yingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060
-
[3]
Hui Wang , Abdelkader Labidi , Menghan Ren , Feroz Shaik , Chuanyi Wang . 微观结构调控的g-C3N4在光催化NO转化中的最新进展:吸附/活化位点的关键作用. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-. doi: 10.1016/j.actphy.2024.100039
-
[4]
Peng XU , Shasha WANG , Nannan CHEN , Ao WANG , Dongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239
-
[5]
Zeyu XU , Anlei DANG , Bihua DENG , Xiaoxin ZUO , Yu LU , Ping YANG , Wenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099
-
[6]
Jing Wang , Pingping Li , Yuehui Wang , Yifan Xiu , Bingqian Zhang , Shuwen Wang , Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097
-
[7]
Guang Huang , Lei Li , Dingyi Zhang , Xingze Wang , Yugai Huang , Wenhui Liang , Zhifen Guo , Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051
-
[8]
Youlin SI , Shuquan SUN , Junsong YANG , Zijun BIE , Yan CHEN , Li LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061
-
[9]
Shasha Ma , Zujin Yang , Jianyong Zhang . Facile Synthesis of FeBTC Metal-Organic Gel and Its Adsorption of Cr2O72−: A Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(8): 314-323. doi: 10.3866/PKU.DXHX202401008
-
[10]
Shuanglin TIAN , Tinghong GAO , Yutao LIU , Qian CHEN , Quan XIE , Qingquan XIAO , Yongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482
-
[11]
Yinuo Wang , Siran Wang , Yilong Zhao , Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063
-
[12]
Jiali CHEN , Guoxiang ZHAO , Yayu YAN , Wanting XIA , Qiaohong LI , Jian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408
-
[13]
Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036
-
[14]
Yiping HUANG , Liqin TANG , Yufan JI , Cheng CHEN , Shuangtao LI , Jingjing HUANG , Xuechao GAO , Xuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224
-
[15]
Wen YANG , Didi WANG , Ziyi HUANG , Yaping ZHOU , Yanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276
-
[16]
Qianlang Wang , Jijun Sun , Qian Chen , Quanqin Zhao , Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205
-
[17]
Xiaosong PU , Hangkai WU , Taohong LI , Huijuan LI , Shouqing LIU , Yuanbo HUANG , Xuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030
-
[18]
Ping ZHANG , Chenchen ZHAO , Xiaoyun CUI , Bing XIE , Yihan LIU , Haiyu LIN , Jiale ZHANG , Yu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014
-
[19]
Fang Niu , Rong Li , Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102
-
[20]
Lewang Yuan , Yaoyao Peng , Zong-Jie Guan , Yu Fang . 二维共价有机框架作为光催化剂在有机合成中的研究进展. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-. doi: 10.1016/j.actphy.2025.100086
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(472)
- HTML views(33)