Citation: XU Rong-sheng, LIN Xiong-chao, WANG Yong-gang. Morphological and interfacial characterization of molten slags on the refractory surface[J]. Journal of Fuel Chemistry and Technology, ;2015, 43(2): 138-144. shu

Morphological and interfacial characterization of molten slags on the refractory surface

  • Corresponding author: LIN Xiong-chao,  WANG Yong-gang, 
  • Received Date: 14 October 2014
    Available Online: 23 December 2014

    Fund Project: 国家自然科学基金(21406261) (21406261) 北京市优秀人才资助(2013D009014000001)。 (2013D009014000001)

  • The interfacial properties between three types of coal slags (A, J1 and J2 with various base/acid ratio) and two refractory materials (mullite and corundum) were studied. The results indicate that the slag A has good wettability on both of refractory materials. While, the slags J1/J2 have experienced the process from incomplete wetting to whole wetting. The contact angles decrease with increasing of interface width of slag and refractory materials (S-R). The contact angles of J1 on mullite decrease with increasing of inclination angles from deformation temperature to 1 520 ℃, but significantly increase when the inclination angle is 20°. The SEM-EDS analysis show that the quantity of slag A permeating into the refractory material is more than that of J1 slags because of interfacial reaction. The infusion and acid-base reactions are the key factors for the refractory corrosion.
  • 加载中
    1. [1]

      [1] SUKUL G, BALARAMAKRISHNA P V. A review of refractory linings for gasification reactors[J]. J Aust Ceram Soc, 2014, 50(2): 83-92.

    2. [2]

      [2] GEHRE P, ANEZIRIS C G, VERES D, PARR C, FRYDA H, NUROTH M. Improved spinel-containing refractory castables for slagging gasifiers[J]. J Eur Ceram Soc, 2013, 33(6): 1077-1086.

    3. [3]

      [3] SUKUL G, BALARAMAKRISHNA P V, HERWADKAR S V. Investigation of refractory lining in hot gas generators[J]. Inter Ceram, 2010, 59(3/4): 209-212.

    4. [4]

      [4] GEHRE P, ANEZIRIS C G. Investigation of slag containing refractory materials for gasification processes[J]. J Eur Ceram Soc, 2012, 32(16): 4051-4062.

    5. [5]

      [5] KWONG K, PETTY A, BENNETT J, KRABBE R, THOMAS H. Wear mechanisms of chromia refractories in slagging gasifiers[J]. Int J Appl Ceram Technol, 2007, 4(6): 503-513.

    6. [6]

      [6] BENNET J P, KWONG K. Refractory liner materials used in slagging gasifiers[J]. Refract Appl News, 2004, 9(5): 20-25.

    7. [7]

      [7] TABER W A. Refractories for gasification[J]. Refract Appl News, 2003, 8(4): 18-22.

    8. [8]

      [8] 周俊虎, 赵晓辉, 刘建中, 杨卫娟, 黄镇宇, 岑可法. 锅炉内卫燃带上高熔点灰渣沉积机理分析[J]. 中国电机工程学报, 2008, 28(14): 20-26. (ZHOU Jun-hu, ZHAO Xiao-hui, LIU Jian-zhong, YANG Wei-juan, HUANG Zhen-yu, CEN Ke-fa. Analysis on deposition mechanism of ash with high ash fusion temperatures on the heat-insulation layer in boiler[J]. Chin Soc for Elec Eng, 2008, 28(14): 20-26.)

    9. [9]

      [9] 高峰, 单晓伟. 煤灰在不同耐火砖表面的润湿性与腐蚀性研究[J]. 燃料化学学报, 2012, 40(7): 769-775. (GAO Feng, SHAN Xiao-wei. Wettability and erodibility of coal ash on the surface of different refractories[J]. J Fuel Chem Technol, 2012, 40(7): 769-775.)

    10. [10]

      [10] NAKANO J, SRIDHAR S, BENNETT J, KWONG K, MOSS T. Interactions of refractory materials with molten gasifier slags[J]. Int J Hydrogen Energy, 2011, 36(7): 4595-4604.

    11. [11]

      [11] KENNETH K T, BENNETT J, SRIDHAR S. Effect of temperature gradient on industrial gasifier coal slag infiltration into alumina refractory[J]. J Am Ceram Soc, 2011, 94(12): 4507-4515.

    12. [12]

      [12] RAWERS J, IVERSON L, COLLINS K. Initial stages of coal slag interaction with high chromia sesquioxide refractories[J]. J Mater Sci, 2002, 37(3): 531-538.

    13. [13]

      [13] 陆佩文. 无机材料科学基础[M]. 武汉: 武汉理工大学出版社, 1996, 117. (LU Pei-wen. Fundamentals of inorganic materials science[M]. Wuhan: Wuhan University of Technology Press, 1996, 117.

    14. [14]

      [14] ZHANG J Y, ZHAO Y C, WEI C, YAO B, ZHENG C G. Mineralogy and microstructure of ash deposits from the Zhuzhou coal-fired power plant in China[J]. Int J Coal Geol, 2010, 81(4): 309-319.

  • 加载中
    1. [1]

      Tao XuWei SunTianci KongJie ZhouYitai Qian . Stable Graphite Interface for Potassium Ion Battery Achieving Ultralong Cycling Performance. Acta Physico-Chimica Sinica, 2024, 40(2): 2303021-0. doi: 10.3866/PKU.WHXB202303021

    2. [2]

      Xiaorui ChenXuan LuoTongming SuXinling XieLiuyun ChenYuejing BinZuzeng QinHongbing Ji . Ga-doped Cu/γ-Al2O3 bifunctional interface sites promote the direct hydrogenation of CO2 to DME. Acta Physico-Chimica Sinica, 2025, 41(10): 100126-0. doi: 10.1016/j.actphy.2025.100126

    3. [3]

      Xuechen HuQiuying XiaFan YueXinyi HeZhenghao MeiJinshi WangHui XiaXiaodong Huang . Electrochemical Characteristics of LiNbO3 Anode Film and Its Applications in All-Solid-State Thin-Film Lithium-Ion Battery. Acta Physico-Chimica Sinica, 2024, 40(2): 2309046-0. doi: 10.3866/PKU.WHXB202309046

    4. [4]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    5. [5]

      Yikai WangXiaolin JiangHaoming SongNan WeiYifan WangXinjun XuCuihong LiHao LuYahui LiuZhishan Bo . Thickness-Insensitive, Cyano-Modified Perylene Diimide Derivative as a Cathode Interlayer Material for High-Efficiency Organic Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 100027-0. doi: 10.3866/PKU.WHXB202406007

    6. [6]

      Zhi DouHuiyu DuanYixi LinYinghui XiaMingbo ZhengZhenming Xu . High-Throughput Screening Lithium Alloy Phases and Investigation of Ion Transport for Solid Electrolyte Interphase Layer. Acta Physico-Chimica Sinica, 2024, 40(3): 2305039-0. doi: 10.3866/PKU.WHXB202305039

    7. [7]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    8. [8]

      Chunai Dai Yongsheng Han Luting Yan Zhen Li Yingze Cao . Ideological and Political Design of Solid-liquid Contact Angle Measurement Experiment. University Chemistry, 2024, 39(2): 28-33. doi: 10.3866/PKU.DXHX202306065

    9. [9]

      Jiayu Tang Jichuan Pang Shaohua Xiao Xinhua Xu Meifen Wu . Improvement for Measuring Transference Numbers of Ions by Moving-Boundary Method. University Chemistry, 2024, 39(5): 193-200. doi: 10.3866/PKU.DXHX202311021

    10. [10]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    11. [11]

      Caiyun JinZexuan WuGuopeng LiZhan LuoNian-Wu Li . Phosphazene-based flame-retardant artificial interphase layer for lithium metal batteries. Acta Physico-Chimica Sinica, 2025, 41(8): 100094-0. doi: 10.1016/j.actphy.2025.100094

    12. [12]

      Xueting CaoShuangshuang ChaMing Gong . Interfacial Electrical Double Layer in Electrocatalytic Reactions: Fundamentals, Characterizations and Applications. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-0. doi: 10.1016/j.actphy.2024.100041

    13. [13]

      Shasha SUNWeichun HUANGMengke WANG . Research progress of interface regulation strategies and applications of two‑dimensional MXenes. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1465-1482. doi: 10.11862/CJIC.20240430

    14. [14]

      Jiandong LiuZhijia ZhangKamenskii MikhailVolkov FilippEliseeva SvetlanaJianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100011-0. doi: 10.3866/PKU.WHXB202308048

    15. [15]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    16. [16]

      Xuan Zhou Yi Fan Zhuoqi Jiang Zhipeng Li Guowen Yuan Laiying Zhang Xu Hou . Liquid Gating Mechanism and Basic Properties Characterization: a New Experimental Design for Interface and Surface Properties in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 113-120. doi: 10.12461/PKU.DXHX202407111

    17. [17]

      Yuhui Yang Jintian Luo Biao Zuo . A Teaching Approach to Polymer Surface and Interface in Undergraduate Polymer Physics Courses. University Chemistry, 2025, 40(4): 126-130. doi: 10.12461/PKU.DXHX202408056

    18. [18]

      Changsheng AnTao Liu . Decoding SEI chemistry at the lithium-metal potential. Acta Physico-Chimica Sinica, 2025, 41(9): 100101-0. doi: 10.1016/j.actphy.2025.100101

    19. [19]

      Yameen AhmedXiangxiang FengYuanji GaoYang DingCaoyu LongMustafa HaiderHengyue LiZhuan LiShicheng HuangMakhsud I. SaidaminovJunliang Yang . Interface Modification by Ionic Liquid for Efficient and Stable FAPbI3 Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(6): 2303057-0. doi: 10.3866/PKU.WHXB202303057

    20. [20]

      Zhuo HanDanfeng ZhangHaixian WangGuorui ZhengMing LiuYanbing He . Research Progress and Prospect on Electrolyte Additives for Interface Reconstruction of Long-Life Ni-Rich Lithium Batteries. Acta Physico-Chimica Sinica, 2024, 40(9): 2307034-0. doi: 10.3866/PKU.WHXB202307034

Metrics
  • PDF Downloads(0)
  • Abstract views(546)
  • HTML views(72)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return