Citation: JI Hong-qiang, ZHANG Qiang, CHEN Lu, SHAN Hong-hong. Study on the reaction performance of methanol to aromatics over Zn/HZSM-5 catalysts with alumina[J]. Journal of Fuel Chemistry and Technology, ;2014, 42(11): 1387-1393. shu

Study on the reaction performance of methanol to aromatics over Zn/HZSM-5 catalysts with alumina

  • Corresponding author: ZHANG Qiang, 
  • Received Date: 11 May 2014
    Available Online: 23 July 2014

    Fund Project: 青岛民生科技计划(13-1-3-126-nsh). (13-1-3-126-nsh)

  • The present paper investigated the effect of Zn modified HZSM-5 catalysts on the reaction performance of methanol to aromatics with the presence of alumina. The catalysts were characterized by BET, XRD, Py-FTIR, NH3-TPD, and H2-TPR techniques, respectively. The experimental result demonstrated that the introduction of alumina produced mesopores in the HZSM-5 catalyst and strengthened the stability of Zn species on the surface of the catalyst. The introduction of Zn species broke the structure of HZSM-5 zeolite and changed the surface acidity of the catalyst. In addition, Zn species might contribute to the dehydrogenation reaction of MTA. Meanwhile, the subsequent aromatization process of olefins was impressed. Within the scope of this study, the maximum value of aromatic yield (C6~11) reached 21.0% when the loading of Zn was 0.5%. The aromatization of methanol is at the control of coke on the catalyst. However, the regenerated catalyst exhibited a higher aromatic yield.
  • 加载中
    1. [1]

      [1] 田涛, 骞伟中, 孙玉建, 崔宇, 卢俨俨, 魏飞. Ag/ZSM-5催化剂上甲醇芳构化过程[J]. 现代化工, 2009, 29(1): 55-58.(TIAN Tao, QIAN Wei-zhong, SUN Yu-jian, CUI Yu, LU Yan-yan, WEI Fei. Aromatization of methanol on Ag/ZSM-5 catalyst[J]. Modern Chemical Industry, 2009, 29(1): 55-58.)

    2. [2]

      [2] FREEMAN D, WELLS RICHARD P K, HUTCHINGS G J. Methanol to hydrocarbons: Enhanced aromatic formation using a composite Ga2O3/H-ZSM-5 catalyst[J]. Chem Commun, 2001, (18): 1754-1755.

    3. [3]

      [3] FREEMAN D, WELLS RICHARD P K, HUTCHINGS G J. Conversion of methanol to hydrocarbons over Ga2O3/H-ZSM-5 and Ga2O3/WO3 catalysts[J]. J Catal, 2002, 205(2): 358-365.

    4. [4]

      [4] GIUSEPPE M G. Transformation of LPG into aromatic hydrocarbon and hydrogen over zeolite catalysts[J]. Catal Rev: Sci Eng, 1994, 36(2): 271-304.

    5. [5]

      [5] CHANG C D, SILVESTRIA J. The conversion of methanol and other O-compounds to hydrocarbons over zeolite catalysts[J]. J Catal, 1977, 47(2): 249-259.

    6. [6]

      [6] 王金英, 李文怀, 胡津仙. ZnHZSM-5上甲醇芳构化反应的研究[J]. 燃料化学学报, 2009, 37(5): 607-612.(WANG Jin-ying, LI Wen-huai, HU Jin-xian. Study of methanol to aromatics on ZnHZSM-5 catalyst[J]. Journal of Fuel Chemistry and Technology, 2009, 37(5): 607-612.)

    7. [7]

      [7] 周建宏, 赵云, 宋金富, 艾沙·努拉洪, 胡佳, 陈黎行, 郭洪臣. 改性纳米HZSM-5沸石催化剂上C5-C8混合烷烃的芳构化反应[J]. 催化学报, 2008, 29(7): 665-670.(ZHOU Jian-hong, ZHAO Yun, SONG Jin-fu, AISHA·Nulaha, HU Jia, CHEN Li-xing, GUO Hong-chen. Aromatization of C5-C8 alkane mixture over modified nano-sized HZSM-5 zeolite catalysts[J]. Chinese Journal of Catalysis, 2008, 29(7): 665-670.)

    8. [8]

      [8] WANG T, TANG X P, HUANG X F, QIAN W Z, CUI Y, HUI X Y, YANG W, WEI F. Conversion of methanol to aromatics in fluidized bed reactor[J]. Catal Today, 2014, 233: 8-13.

    9. [9]

      [9] 张金贵, 骞伟中, 汤效平, 沈葵, 王彤, 黄晓凡, 魏飞. 甲醇芳构化中催化剂酸性对脱烷基、烷基化和异构化反应的影响[J]. 物理化学学报, 2013, 29(6): 1281-1288.(ZHANG Jin-gui, QIAN Wei-zhong, TANG Xiao-ping, SHEN Kui, WANG Tong, HUANG Xiao-fan, WEI Fei. Influence of catalysts acidity on dealkylation, isomerization and alkylation in MTA process[J]. Acta Physico-Chimica Sinica, 2013, 29(6): 1281-1288.)

    10. [10]

      [10] BJØRGEN M, JOENSEN F, SPANGSBERG HOLM M, OLSBYE U, LILLERUD K P, SVELLE S. Methanol to gasoline over zeolite H-ZSM-5: Improved catalyst performance by treatment with NaOH[J]. Appl Catal A: Gen, 2008, 345(1): 43-50.

    11. [11]

      [11] WACHS I E. Raman and IR studies of surface metal oxide species on oxide supports: supported metal oxide catalysts[J]. Catal Today, 1996, 27(3): 437-455.

    12. [12]

      [12] 佘励勤, 王多才, 李宣文, 刘兴云, 韩明. 锌在ZnZSM-5沸石中的形态及其催化作用[J]. 物理化学学报, 1994, 10(3): 301-305.(SHE Li-qin, WANG Duo-cai, LI Xuan-wen, LIU Xing-yun, HAN Ming. The states of zinc in ZnZSM-5 and their catalysis[J]. Acta Physico-Chimica Sinica, 1994, 10(3): 301-305.)

    13. [13]

      [13] 桂建舟, 张晓彤, 胡之德, 孙兆林. 正己烷在ZnNi/HZSM-5上芳构化反应的研究[J]. 兰州大学学报(自然科学版), 2003, 39(5): 61-65.(GUI Jian-zhou, ZHANG Xiao-tong, HU Zhi-de, SUN Zhao-lin. A study of n-hexane aromatization on the ZnNi/HZSM-5 catalyst[J]. Journal of Lanzhou University (Natural Sciences), 2003, 39(5): 61-65.)

    14. [14]

      [14] MASALSKA A. Properties and activity of Al2O3+ZSM-5 supported Ni and NiRu catalysts in 1-Methylnaphthalene hydrogenation: Effect of Ni incorporation method and calcing procedure[J]. Catal Lett, 2009, 127(1/2): 158-166.

    15. [15]

      [15] 张欣, 徐广通, 邹亢, 黄南贵. S Zorb吸附剂中锌铝尖晶石形成原因的研究[J]. 石油学报(石油加工), 2012, 28(2): 242-247.(ZHANG Xin, XU Guang-tong, ZOU Kang, HUANG Nan-gui. Formation mechanism of gahnite in S Zorb sorbents[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2012, 28(2): 242-247.)

    16. [16]

      [16] 程谟杰, 杨亚书. ZnHZSM-5上脱氢环化芳构化过程的探讨[J]. 分子催化, 1996, 10(6): 418-422.(CHENG Mo-jie, YANG Ya-shu. Study on dehydrocyclization and aromaization process over ZnHZSM-5 catalyst[J]. Journal of Molecular Catalysis (China), 1996, 10(6): 418-422.)

    17. [17]

      [17] BISCARDI J A, IGLESISA E. Reaction pathways and rate-determining steps in reactions of alkanes on H-ZSM-5 and Zn/H-ZSM-5 catalysts[J]. J Catal, 1999, 182(1): 117-128.

    18. [18]

      [18] ONO Y, ADACHI H, SENODA Y. Selective conversion of methanol into aromatic hydrocarbons over zinc-exchanged ZSM-5 zeolites[J]. J Chem Soc Faraday Trans 1: Phys Chem Cond Phas, 1988, 84(4): 1091-1099.

    19. [19]

      [19] BERNADT H, LIETZ G, VØELTER J. Zinc promoted H-ZSM-5 catalysts for conversion of propane to aromatics: II. Nature of the active sites and their activation[J]. Appl Catal A: Gen, 1996, 146(2): 365-379.

  • 加载中
    1. [1]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    2. [2]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    3. [3]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    4. [4]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    5. [5]

      Mingjie Lei Wenting Hu Kexin Lin Xiujuan Sun Haoshen Zhang Ye Qian Tongyue Kang Xiulin Wu Hailong Liao Yuan Pan Yuwei Zhang Diye Wei Ping Gao . Co/Mn/Mo掺杂加速NiSe2重构以提高其电催化尿素氧化性能. Acta Physico-Chimica Sinica, 2025, 41(8): 100083-. doi: 10.1016/j.actphy.2025.100083

    6. [6]

      Ling Liu Haibin Wang Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080

    7. [7]

      Wanmin Cheng Juan Du Peiwen Liu Yiyun Jiang Hong Jiang . Photoinitiated Grignard Reagent Synthesis and Experimental Improvement in Triphenylmethanol Preparation. University Chemistry, 2024, 39(5): 238-242. doi: 10.3866/PKU.DXHX202311066

    8. [8]

      Li LinSong-Lin TianZhen-Yu HuYu ZhangLi-Min ChangJia-Jun WangWan-Qiang LiuQing-Shuang WangFang Wang . Molecular crowding electrolytes for stabilizing Zn metal anode in rechargeable aqueous batteries. Chinese Chemical Letters, 2024, 35(7): 109802-. doi: 10.1016/j.cclet.2024.109802

    9. [9]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    10. [10]

      Xue Liu Lipeng Wang Luling Li Kai Wang Wenju Liu Biao Hu Daofan Cao Fenghao Jiang Junguo Li Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049

    11. [11]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    12. [12]

      Xiping DongXuan WangZhixiu LuQinhao ShiZhengyi YangXuan YuWuliang FengXingli ZouYang LiuYufeng Zhao . Construction of Cu-Zn Co-doped layered materials for sodium-ion batteries with high cycle stability. Chinese Chemical Letters, 2024, 35(5): 108605-. doi: 10.1016/j.cclet.2023.108605

    13. [13]

      Jie ZhouQuanyu LiXiaomeng HuWeifeng WeiXiaobo JiGuichao KuangLiangjun ZhouLibao ChenYuejiao Chen . Water molecules regulation for reversible Zn anode in aqueous zinc ion battery: Mini-review. Chinese Chemical Letters, 2024, 35(8): 109143-. doi: 10.1016/j.cclet.2023.109143

    14. [14]

      Xinxiu YanXizhe HuangYangyang LiuWeishang JiaHualin ChenQi YaoTao Chen . Hyperbranched polyamidoamine protective layer with phosphate and carboxyl groups for dendrite-free Zn metal anodes. Chinese Chemical Letters, 2024, 35(10): 109426-. doi: 10.1016/j.cclet.2023.109426

    15. [15]

      Yunfei Shen Long Chen . Gradient imprinted Zn metal anodes assist dendrites-free at high current density/capacity. Chinese Journal of Structural Chemistry, 2024, 43(10): 100321-100321. doi: 10.1016/j.cjsc.2024.100321

    16. [16]

      Qiaojia GUOJunkai CAIChunying DUAN . Effects of anions on the structural regulation of Zn-salen-modified metal-organic cage. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2203-2211. doi: 10.11862/CJIC.20240209

    17. [17]

      Yan-Kai ZhangYong-Zheng ZhangChun-Xiao JiaFang WangXiuling ZhangYuhang WuZhongmin LiuHui HuDa-Shuai ZhangLonglong GengJing XuHongliang Huang . A stable Zn-MOF with anthracene-based linker for Cr(VI) photocatalytic reduction under sunlight irradiation. Chinese Chemical Letters, 2024, 35(12): 109756-. doi: 10.1016/j.cclet.2024.109756

    18. [18]

      Chuyuan Lin Hui Lin Lingxing Zeng . Optimization strategy for rechargeable Zn metal batteries over wide-pH aqueous electrolytes. Chinese Journal of Structural Chemistry, 2025, 44(1): 100407-100407. doi: 10.1016/j.cjsc.2024.100407

    19. [19]

      Shilong LiMing ZhaoYefei XuZhanyi LiuMian LiQing HuangXiang Wu . Performance optimization of aqueous Zn/MnO2 batteries through the synergistic effect of PVP intercalation and GO coating. Chinese Chemical Letters, 2025, 36(3): 110701-. doi: 10.1016/j.cclet.2024.110701

    20. [20]

      Shuwen SUNGaofeng WANG . Design and synthesis of a Zn(Ⅱ)-based coordination polymer as a fluorescent probe for trace monitoring 2, 4, 6-trinitrophenol. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 753-760. doi: 10.11862/CJIC.20240399

Metrics
  • PDF Downloads(0)
  • Abstract views(440)
  • HTML views(16)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return