Citation: CHEN Yan, ZHANG Ji-yu, FENG Yun-fei. Effects of dispersion of sodium ions on catalytic Fujian anthracite gasification[J]. Journal of Fuel Chemistry and Technology, ;2014, 42(11): 1302-1308. shu

Effects of dispersion of sodium ions on catalytic Fujian anthracite gasification

  • Corresponding author: CHEN Yan, 
  • Received Date: 26 June 2014
    Available Online: 13 September 2014

    Fund Project: 国家自然科学基金(20376014) (20376014) 福建省科技厅重点资助(HG99-01). (HG99-01)

  • With sodium carbonate and sodium dodecyl benzene sulfonate used as the catalysts respectively, the steam gasification kinetic experiments of Fujian Jianxin and Chuanghong anthracites were conducted in an atmospheric thermal balance, and the effects of catalyst loading amount(0%~15%) and gasification temperature (850~950 ℃) were examined. The experimental data were fitted by shrinking core model. Meanwhile, the kinetic parameters were obtained. The results show that both sodium carbonate and sodium dodecyl benzene sulfonate can significantly increase the gasification rate and reduce the activation energy of gasification reaction of the two anthracite samples. Because the loading process of catalyst LAS can make the sodium ions being dispersed more evenly, even with low concentration of Na+, the carbon conversion can be improved significantly and the gasification reaction time is reduced too. The experiments prove that it is a new way for the application and development of LAS in catalytic steam gasification of Fujian anthracite.
  • 加载中
    1. [1]

      [1] 任德贻, 雷加锦, 唐跃刚, 郭国莉, 姚玉琴. 煤显微组分中有机硫的微区分析和分布特征[J].煤田地质及勘测, 1993, 21(1): 27-29.(REN De-yi, LEI Jia-jin, TANG Yue-gang, GUO Guo-li, YAO Yu-qin. The microarea analysis and distribution characteristics of the organic sulfur in macerals[J]. Coal Geology & Exploration, 1993, 21(1): 27-29.)

    2. [2]

      [2] 王峰, 宋恩民, 张莲影. 利用四氯乙烯脱除煤中有机硫的机理探讨[J]. 煤炭加工与综合利用, 1998, (5): 12-13.(WANG Feng, SONG En-min, ZHANG Lian-ying. Study on the mechanism of removing organic sulfur in coal with tetrachlorethylene[J]. Coal Processing & Comprehensive Utilization, 1998, (5): 12-13.)

    3. [3]

      [3] 陈鹏. 中国煤中硫的赋存特征及脱硫[J]. 煤炭转化, 1994, 17(4): 1-8.(CHEN Peng. Characteristics and distribution of sulfur in Chinese coals and desulfurization[J]. Coal Conversion, 1994, 17(4): 1-8.)

    4. [4]

      [4] 尤先锋, 刘生玉, 吴争鸣, 任军, 谢克昌. 煤热解过程中氮和硫化合物分配及生成机理[J]. 煤炭转化, 2001, 24(3): 1-5.(YOU Xian-feng, LIU Sheng-yu, WU Zheng-ming, REN Jun, XIE Ke-chang. Study of nitrogen and sulfur distribution and functional forms during coal pyrolysis[J]. Coal Conversion, 2001, 24(3): 1-5.)

    5. [5]

      [5] 朱雪莉. 煤中硫的赋存规律[J]. 科技情报开发与经济, 2010, 20(17): 183-185.(ZHU Xue-li. Talking about the occurrence regularity of sulfur in coal[J]. Sci-Tech Information Development & Economy, 2010, 20(17): 183-185.)

    6. [6]

      [6] 康西栋, 杨起, 张瑞生, 周春光, 汤达祯, 刘大锰. 华北晚古生代煤中有机硫的赋存状态及其成因[J]. 中国地质大学学报, 1999, 24(4): 413-415.(KANG Xi-dong, YANG Qi, ZHANG Rui-sheng, ZHOU Chun-guang, TANG Da-zhen, LIU Da-meng. Occurrence state and origin of organic sulfur in late Paleozoic coal, North China[J]. Earth Science-Journal of China University of Geosciences, 1999, 24(4): 413-415.)

    7. [7]

      [7] 秦志宏. 煤有机质溶出行为与煤嵌布结构模型[M]. 徐州: 中国矿业大学出版社, 2008.(QIN Zhi-hong. Dissolution behavior of organic matters in coal and coal inbuilt state structural model[M]. Xuzhou: China University of Mining and Technology Press, 2008.)

    8. [8]

      [8] 秦志宏. 基于萃取与反萃取的温和化煤族组分分离方法: 中国, 200710022120[P]. 2011-03-30.(QIN Zhi-hong. A mild separation method of coal group components based on extraction and stripping process: CN, 200710022120[P]. 2011-03-30.)

    9. [9]

      [9] QIN Z H, HOU C L, CHEN J, ZHANG L Y, MA J Q. Group separation of coal components and new ideas of coal utilization as petroleum[J]. Int J Min Sci Technol, 2009, 19(5): 636-641.

    10. [10]

      [10] KOZLOWSKI M. XPS study of reductively and non-reductively modified coal[J]. Fuel, 2004, 83(3): 259-265.

    11. [11]

      [11] PIETRZAK R, WACHOWSKA H. The influence of oxidation with HNO3 on the surface composition of high sulphur coals XPS study[J]. Fuel Process Technol, 2006, 87(11): 1021-1029.

    12. [12]

      [12] MARINOV S P, TYULIEV G, STEFANOVA M, CARLEER R, YPERMAN J. Low rank coals sulphur functionality study by AP-TPR/TPO coupled with MS and potentiometric detection and by XPS[J]. Fuel Process Technol, 2004, 85(4): 267-277.

    13. [13]

      [13] 刘艳华, 车得福, 徐通模. 利用X射线光电子能谱确定煤及其残焦中硫的形态[J]. 西安交通大学学报, 2004, 38(1): 101-104.(LIU Yan-hua, CHE De-fu, XU Tong-mo. X-Ray photoelectron spectroscopy determination of the forms of sulfur in coal and its chars[J]. Journal of Xi’an Jiaotong University, 2004, 38(1): 101-104.)

    14. [14]

      [14] GRZYBEK T, PIETRZAK R, WACHOWSKA H. X-ray photoelectron spectroscopy study of oxidized coals with different sulphurcontent[J]. Fuel Process Technol, 2002, 77-78: 1-7.

    15. [15]

      [15] OLIVELLA M A, PALACIOS J M, VAIRAVAMURTHY A, DEL RÍO J C, DE LAS HERAS F X C. A study of sulfur functionalities in fossil fuels using destructive-(ASTM and Py-GC-MS) and non-destructive-(SEM-EDX, XANES and XPS) techniques[J]. Fuel, 2002, 81(4): 405-411.

    16. [16]

      [16] 朱应军, 郑明东. 炼焦用精煤中硫形态的XPS分析方法研究[J]. 选煤技术, 2010, (3): 55-57.(ZHU Ying-jun, ZHENG Ming-dong.Research on XPS method for analyzing form of sulfur in clean coking coal[J]. Coal Preparation Technology, 2010, (3): 55-57.)

    17. [17]

      [17] URBAN N R, ERNST K, BERNASCONI S. Addition of sulfur to organic matter during early diagenesis of lake sediments[J]. Geochim Cosmochim Acta, 1999, 63(6): 837-853.

    18. [18]

      [18] 马玲玲, 秦志宏, 张露, 刘旭, 陈航. 煤有机硫分析中XPS分峰拟合方法及参数设置[J]. 燃料化学学报, 2014, 42(3): 277-283.(MA Ling-ling, QIN Zhi-hong, ZHANG Lu, LIU Xu, CHEN Hang. Peak fitting methods and parameter settings in xps analysis for the organic sulfur in coal[J]. Journal of Fuel Chemistry and Technology, 2014, 42(3): 277-283.)

    19. [19]

      [19] 陈娟. 煤全组分族分离产物的形成过程及应用特性研究[D]. 徐州: 中国矿业大学, 2011.(CHEN Juan. Study on formation and application characteristics of products of coal all-components group separation[D]. Xuzhou: China University of Mining and Technology, 2011.)

    20. [20]

      [20] 徐光宪, 王祥云. 物质结构[M]. 2版. 北京: 科学出版社, 2010.(XU Guang-xian, WANG Xiang-yun. Structure of matter[M]. 2nd ed. Beijing: Science Press, 2010.)

    21. [21]

      [21] 王建祺, 吴文辉, 冯大明. 电子能谱学(XPS/XAES/UPS)引论[M]. 北京: 国防工业出版社, 1992.(WANG Jian-qi, WU Wen-hui, FENG Da-ming. Electronic spectroscopy (XPS/XAES/UPS) introduction[M]. Beijing: National Defense Industry Press, 1992.)

    22. [22]

      [22] 郭用猷, 张冬菊, 刘艳华. 物质结构基本原理[M]. 2版. 北京: 高等教育出版社, 2011.(GUO Yong-you, ZHANG Dong-ju, LIU Yan-hua. Fundamental structure principles of substances[M]. 2nd ed. Beijing: Higher Education Press, 2011.)

    23. [23]

      [23] 潘承璜, 赵良仲. 电子能谱基础[M]. 北京: 科学出版社, 1981.(PAN Cheng-huang, ZHAO Liang-zhong. Electron spectroscopy foundation[M]. Beijing: Science Press, 1981.)

    24. [24]

      [24] 刘世宏, 王当憨, 潘承璜. X射线光电子能谱分析[M]. 北京: 科学出版社, 1988.(LIU Shi-hong, WANG Dang-han, PAN Cheng-huang. X-ray photoelectron spectroscopy[M]. Beijing: Science Press, 1988.)

  • 加载中
    1. [1]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    2. [2]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    3. [3]

      Tao Cao Fang Fang Nianguang Li Yinan Zhang Qichen Zhan . Green Synthesis of p-Hydroxybenzonitrile Catalyzed by Spinach Extracts under Red-Light Irradiation: Research and Exploration of Innovative Experiments for Pharmacy Undergraduates. University Chemistry, 2024, 39(5): 63-69. doi: 10.3866/PKU.DXHX202309098

    4. [4]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

    5. [5]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    6. [6]

      Fangxuan Liu Ziyan Liu Guowei Zhou Tingting Gao Wenyu Liu Bin Sun . Hollow structured photocatalysts. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-. doi: 10.1016/j.actphy.2025.100071

    7. [7]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    8. [8]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    9. [9]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    10. [10]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    11. [11]

      Jiatong Hu Qiyi Wang Ruiwen Tang Jiajing Feng . Photocatalytic Journey of Perylene Diimides in a Competitive Arena. University Chemistry, 2025, 40(5): 328-333. doi: 10.12461/PKU.DXHX202407015

    12. [12]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    13. [13]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    14. [14]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    15. [15]

      Honghong Zhang Zhen Wei Derek Hao Lin Jing Yuxi Liu Hongxing Dai Weiqin Wei Jiguang Deng . Recent advances in synergistic catalytic valorization of CO2 and hydrocarbons by heterogeneous catalysis. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-. doi: 10.1016/j.actphy.2025.100073

    16. [16]

      Yuena Yu Fang Fang . Microwave-Assisted Synthesis of Safinamide Methanesulfonate. University Chemistry, 2024, 39(11): 210-216. doi: 10.3866/PKU.DXHX202401076

    17. [17]

      Shipeng WANGShangyu XIELuxian LIANGXuehong WANGJie WEIDeqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094

    18. [18]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    19. [19]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    20. [20]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

Metrics
  • PDF Downloads(0)
  • Abstract views(549)
  • HTML views(97)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return