Citation: YAN Jin-pei, CHEN Li-qi, YANG Lin-jun. Experimental study on promotion of coal combustion fine particles acoustic agglomeration removal by using wetting agents[J]. Journal of Fuel Chemistry and Technology, ;2014, 42(10): 1259-1265. shu

Experimental study on promotion of coal combustion fine particles acoustic agglomeration removal by using wetting agents

  • Corresponding author: YAN Jin-pei, 
  • Received Date: 25 June 2014
    Available Online: 29 August 2014

    Fund Project: 国家自然科学基金(21106018) (21106018) 国家海洋局青年海洋科学基金(2013534)。 (2013534)

  • The characteristics of agglomeration removal between wetting agent droplets and fine particles were investigated in an acoustic agglomeration chamber. A novel technique using wetting agents to promote the fine particle capture by acoustic agglomeration was presented. The experimental results show that the type of wetting agent has a significant effect on the acoustic agglomeration of fine particles. The particle stage removal efficiencies using JFC and FS-310 are similar to that using plain water droplets, but the removal efficiencies by SDS and Silanol w22 are much higher than that using water droplets. Fine particle removal efficiency in the acoustic field correlates well with the wettability of wetting agents, which decreases with increasing the relative contact angle of wetting agents. While the relative contact angle descends from 83° to 0°, the removal efficiency of fine particles with sound pressure level of 150 dB increases by about 18%. However, the removal efficiency of fine particle without acoustic effects only increases by about 5%. Higher sound pressure level can improve the particle removal efficiency that is extremely low when the sound pressure level is below 150 dB. However it can be improved with wetting agents addition to the atomization droplets. The capture efficiency can be increased by 25% with SDS adding than acoustic effect only under the sound pressure level of 130 dB. It indicates that the removal of fine particles is effectively improved by using wetting agents with acoustic wave agglomeration, and the high removal efficiency can be achieved at a low sound pressure level.
  • 加载中
    1. [1]

      [1] SUN Y L, ZHUNG G S, TANG A H, WANG Y, AN Z S. Chemical characteristics of PM2.5 and PM10 in haze-fog episodes in Beijing[J]. Environ Sci Technol, 2006, 40(10): 3148-3155.

    2. [2]

      [2] GAO J, WANG T, ZHOU X H, WU W S, WANG W X. Measurement of aerosol number size distributions in the Yangtze River delta in China: Formation and growth of particles under polluted conditions[J]. Atmos Environ, 2009, 43(4): 829-836.

    3. [3]

      [3] 张小曳, 孙俊英, 王亚强, 李卫军, 张蔷, 王炜罡, 权建农, 曹国良, 王继志, 杨元琴, 张养梅. 我国雾-霾成因及其治理的思考[J]. 科学通报, 2013, 58(13): 1178-1187. (ZHANG Xiao-ye, SUN Jun-ying, WANG Ya-qiang, LI Wei-jun, ZHANG Qiang, WANG Wei-gang, QUAN Jian-nong, CAO Guo-liang, WANG Ji-zhi, YANG Yuan-qin, ZHANG Yang-mei. Factors contributing to haze and fog in China[J]. China Science Bull, 2013, 58(13): 1178-1187.)

    4. [4]

      [4] 赵永椿, 张军营, 魏凤, 陈俊, 郑楚光. 燃煤超细颗粒物团聚促进机制的实验研究[J]. 化工学报, 2007, 58(11): 2876-2881. (ZHAO Yong-chun, ZHANG Jun-ying, WEI Feng, CHEN Jun, ZHENG Chu-guang. Experimental study on agglomeration of submicron particles from coal combustion[J]. Journal of Chemical Industry and Engineering, 2007, 58(11): 2876-2881.)

    5. [5]

      [5] 颜金培, 杨林军, 张霞, 孙露娟, 张宇, 沈湘林. 应用蒸汽相变机理脱除燃煤可吸入颗粒物实验研究[J]. 中国电机工程学报, 2007, 35(27): 12-16. (YAN Jin-pei, YANG Lin-jun, ZHANG Xia, SUN Lu-juan, ZHANG Yu, SHEN Xiang-lin. Experiment study on separation of inhalable particles from coal combustion by heterogeneous condensation enlargement[J]. Proceedings of the CSEE, 2007, 35(27): 12-16.)

    6. [6]

      [6] REEFTHOF G. Acoustic agglomeration of power plant fly ash for environmental and hot gas clean-up[J]. J Vib Acoust, 1988, 110 (4): 552-557.

    7. [7]

      [7] RIERA-FRANCO E S, GALLEGO-JUAREZ J A, RODRIGUEZ-CORRAL G L. Application of high-power ultrasound of enhances fluid/solid particle separation processes[J]. Ultrasonics, 2000, 38(5): 642-646.

    8. [8]

      [8] HOFFMANN T L, CHEN W, KOOPMANN G H. Experimental and numerical analysis of bimodal acoustic agglomeration[J]. J Vib Acoust, 1993, 115(3): 232-240.

    9. [9]

      [9] HOFFMANN T L, KOOPMANN G H. A new technique for visualization of acoustic particle agglomeration[J]. Am Ins Phy, 1994, 65(5): 1527-1536.

    10. [10]

      [10] 姚刚, 盛昌栋, 杨林军, 沈湘林. 燃烧超细颗粒声波团聚的谱分布数值模拟[J]. 燃烧科学与技术, 2005, 11(3): 273-277. (YAO Gang, SHENG Chang-dong, YANG Lin-jun, SHEN Xiang-lin. Spectrum evolution of combustion ultrafine particles acoustic agglomeration simulated by numerical algorism[J]. Journal of Combustion Science and Technology, 2005, 11(3): 273-277.)

    11. [11]

      [11] 赵兵, 陈厚涛, 徐进, 沈湘林. 声波与种子颗粒联合作用下细颗粒脱除的实验研究[J]. 动力工程, 2007, 27(5): 785-788. (ZHAO Bing, CHEN Huo-tao, XU Jin, SHEN Xiang-lin. Experimental study on precipitation of fine particles under the combined action of acoustic waves and seed particles[J]. Journal of Power Engineering, 2007, 27(5): 785-788.)

    12. [12]

      [12] 张光学, 刘建忠, 周俊虎, 王洁, 岑可法. 频率对燃煤飞灰声波团聚影响的模型研究及实验验证[J]. 中国电机工程学报, 2009, 29(17): 97-102. (ZHANG Guang-xue, LIU Jian-zhong, ZHOU Jun-hu, WANG Jie, CEN Ke-fa. A theoretical model and experimental verification on the influence of frequency on acoustic agglomeration of coal-fired fly ash[J]. Proceedings of the CSEE(China), 2009, 29(17): 97-102.)

    13. [13]

      [13] 陈厚涛. 声波团聚增强燃烧源细颗粒物排放控制的研究[D]. 南京: 东南大学, 2009. (CHEN Hou-tao. Study on the enhancement of emission control of fine particles from combustion by acoustic agglomeration[D]. Nanjing: Southeast University, 2009.)

    14. [14]

      [14] 陈厚涛, 赵兵, 章汝心, 曹金祥, 沈湘林. 声波与雾化水滴联合作用增强燃煤PM2.5脱除的实验研究[J]. 中国电机工程学报, 2009, 29(2): 35-40. (CHEN Huo-tao, ZHAO Bing, ZHANG Ru-xin, CAO Jin-xiang, SHEN Xiang-lin. Experimental study on the enlargement of removing PM2.5 in coal-fired fumes under the combined effect of acoustic wave and atomized water drop[J]. Proceedings of the CSEE, 2009, 29(2): 35-40.)

    15. [15]

      [15] 王洁, 张光学, 刘建忠, 周俊虎, 岑可法. 种子颗粒对声波团聚效率的影响[J]. 化工学报, 2011, 62(2): 355-361. (WANG Jie, ZHANG Guang-xue, LIU Jian-zhong, ZHOU Jun-hu, CEN Ke-fa. Effect of seed particles on acoustic agglomeration efficiency[J]. Journal of Chemical Industry and Engineering, 2011, 62(2): 355-361.)

    16. [16]

      [16] CHEN Y Y, LEE W G. Hygroscopic properties of inorganic-salt aerosol with surface-active organic compounds[J]. Chemosphere, 1999, 38(10): 2431-2448.

    17. [17]

      [17] WEINGARTNER E, BURTSCHER H, BALTENSPERGER U. Hygroscopic properties of carbon and diesel soot particles[J]. Atmos Environ, 1997, 31(15): 2311-2327.

    18. [18]

      [18] KERMINEN V M. The effects of particle chemical character and atmospheric processes on particle hygroscopic properties[J]. J Aerosol Sci, 1997, 28(1): 121-132.

    19. [19]

      [19] SCHABE K, KORBER J, OFENLOCH O, EHRIG R, DEUFLHARD P. Aerosol formation in gas-liquid contact devices-nucleation, growth and particle dynamics[J]. Chem Eng Sci, 2002, 57(20): 4345-4356.

    20. [20]

      [20] MIKHAILOV E F, VLASENKO S S, LUTZ K, REINHARD N. Interaction of soot aerosol particles with water droplets: Influence of surface hydrophilicity[J]. J Aerosol Sci, 2001, 32(6): 697-711.

    21. [21]

      [21] CLIVE A P, JOHN R. Contact angle studies of galena particles[J]. J Colloid Interface Sci, 1995, 172(2): 302-310.

    22. [22]

      [22] 颜金培, 杨林军, 沈湘林. 燃烧源PM2.5微粒润湿性能[J]. 东南大学学报(自然科学板), 2006, 36(5): 760-764. (YAN Jin-pei, YANG Lin-jun, SHEN Xiang-lin. Wettability of PM2.5 from combustion[J]. Journal of Southeast University(Natural Science Edition), 2006, 36(5): 760-764.)

    23. [23]

      [23] CHYLEK P, VIDEEN G, NGO D, PINNICK R G, KLETT J D. Effect of black carbon on the optical properties and climate forcing of sulfate aerosols[J]. J Geophys Res, 1995, 100(D8):16325-16332.

  • 加载中
    1. [1]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    2. [2]

      Ziliang KANGJiamin ZHANGHong ANXiaohua LIUYang CHENJinping LILibo LI . Preparation and water adsorption properties of CaCl2@MOF-808 in-situ composite moulded particles. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2133-2140. doi: 10.11862/CJIC.20240282

    3. [3]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

    4. [4]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    5. [5]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    6. [6]

      Fangxuan Liu Ziyan Liu Guowei Zhou Tingting Gao Wenyu Liu Bin Sun . Hollow structured photocatalysts. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-. doi: 10.1016/j.actphy.2025.100071

    7. [7]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    8. [8]

      Wenjun Yang Qiaoling Tan Wenjiao Xie Xiaoyu Pan Youyong Yuan . Construction and Characterization of Calcium Alginate Microparticle Drug Delivery System: A Novel Design and Teaching Practice in Polymer Experiments. University Chemistry, 2025, 40(3): 371-380. doi: 10.12461/PKU.DXHX202405150

    9. [9]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    10. [10]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    11. [11]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    12. [12]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    13. [13]

      Xiaoyan Wang Chao Wang Dongmei Dai Yanling Geng Hongtao Gao . Design of Ideological and Political Education for the Experiment on Calcium Content Determination in Calcium Supplements. University Chemistry, 2024, 39(2): 162-167. doi: 10.3866/PKU.DXHX202307074

    14. [14]

      Xiuyun Wang Jiashuo Cheng Yiming Wang Haoyu Wu Yan Su Yuzhuo Gao Xiaoyu Liu Mingyu Zhao Chunyan Wang Miao Cui Wenfeng Jiang . Improvement of Sodium Ferric Ethylenediaminetetraacetate (NaFeEDTA) Iron Supplement Preparation Experiment. University Chemistry, 2024, 39(2): 340-346. doi: 10.3866/PKU.DXHX202308067

    15. [15]

      Yukai Jiang Yihan Wang Yunkai Zhang Yunping Wei Ying Ma Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033

    16. [16]

      Tongyu Zheng Teng Li Xiaoyu Han Yupei Chai Kexin Zhao Quan Liu Xiaohui Ji . A DIY pH Detection Agent Using Persimmon Extract for Acid-Base Discoloration Popularization Experiment. University Chemistry, 2024, 39(5): 27-36. doi: 10.3866/PKU.DXHX202309107

    17. [17]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    18. [18]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    19. [19]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    20. [20]

      Yuanyuan JIANGFangfang TUYuhong ZHANGShi CHENJiayuan XIANGXinhui XIA . Preparation and electrochemical properties of high-stability cathode prelithiation additive. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1101-1111. doi: 10.11862/CJIC.20240441

Metrics
  • PDF Downloads(0)
  • Abstract views(321)
  • HTML views(20)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return