Citation: HAN Lu, ZHOU Ya-song, WEI Qiang, LUO Yi, WANG Jing-yu. Effect of acidity and hydrogenation ability on the hydrodenitrogenation performance of NiW/Al2O3 catalyst[J]. Journal of Fuel Chemistry and Technology, ;2014, 42(10): 1233-1239. shu

Effect of acidity and hydrogenation ability on the hydrodenitrogenation performance of NiW/Al2O3 catalyst

  • Corresponding author: ZHOU Ya-song, 
  • Received Date: 25 March 2014
    Available Online: 5 May 2014

    Fund Project: 国家自然科学基金(U1362203) (U1362203) 国家重点基础研究发展规划(973计划, 2010CB226903)。 (973计划, 2010CB226903)

  • NiW/Al2O3 catalysts for the hydrodenitrogenation of heavy oil were prepared by nickel-tungstate active metals located on Al2O3 with wetness impregnation. The effect of boric acid on the acidity and the effect of citric acid on the hydrogenation ability were studied. The results of NH3-TPD, HRTEM, H2-TPR and XPS showed that the addition of boric acid increased the proportion of strong and medium acid. The strong interaction between the support and metal has been weakened. Citric acid achieved moderate length of Ni-W-S active phases, increased the dispersion and the sulfidation degree of the metal on catalysts surface. NiW catalyst modified with boron acid and citric acid had outstanding HDN performance for Venezuela deasphalted oil, promoted the hydrogenation of aromatics and resin. It also had strong HDN abilities to basic and non-basic nitrogen compounds. The catalyst showed outstanding HDN performance of heavy oil.
  • 加载中
    1. [1]

      [1] FAN Y, BAO X J. Citric acid-assisted hydrothermal method for preparing NiW/USY-Al2O3 ultra deep hydro-desulfurization catalysts[J]. J Catal, 2011, 279(1): 27-35.

    2. [2]

      [2] SATO S, KUROKI M, SODESAWA T, NOZAKI F, MACIEL G E. Surface structure and acidity of alumina-boric catalysts[J]. J Mol Catal A: Chem, 1995, 104: 171-177.

    3. [3]

      [3] DING L H, ZHANG Z S, ZHENG Y, RING Z, CHEN J W. Effect of fluorine and boron modification on the HDS, HDN and HDA activity of hydrotreating catalysts[J]. Appl Catal A: Gen, 2006, 301(2): 241-250.

    4. [4]

      [4] HENSEN E J M, KOOYMAN P J, VAN DER MEER Y, VAN DER KRAAN A M, DE BEER V H J, VAN VEEN J A R, VAN SANTEN R A. The relation between morphology and hydrotreating activity for supported MoS2 particles[J]. J Catal, 2001, 199(2): 224-235.

    5. [5]

      [5] FUJIKAWA T. Highly active CoMo HDS catalyst for the production of clean diesel fuels[J]. Catal Surv Asia, 2006, 10(2): 89-97.

    6. [6]

      [6] SUNDARAMURTHY V, DALAI A K, ADJAYE J. The effect of phosphorus on hydrotreating property of NiMo/γ-Al2O3 nitride catalyst[J]. Appl Catal A: Gen, 2008, 335(1): 204-210.

    7. [7]

      [7] PALCHEVA R, KALUZA L, SPOJAKINA A, JIRATOVA K, TYULIEV G. NiMo/γ-Al2O3 catalysts from Ni heteropolyoxomolybdate and effect of alumina modification by B, Co, or Ni[J]. Chin J Catal, 2012, 33(4/6): 952-961.

    8. [8]

      [8] KRAUS H, PRINS R. Composition of impregnation solutions and wet impregnated Mo-P/γ-Al2O3 catalysts as investigated by 31P and 95Mo NMR[J]. J Catal, 1996, 164(2): 251-259.

    9. [9]

      [9] LEWANDOWSKI M, SARBAK Z. The effect of boron addition on hydrodesulfurization and hydrodenitrogenation activity of NiMo/Al2O3 catalysts[J]. Fuel, 2000, 79(5): 487-495.

    10. [10]

      [10] MAITY S K, LEMUS M, ANCHEYTA J. Effect of preparation methods and content of boron on hydrotreating catalytic activity[J]. Energy Fuels, 2011, 25(7): 3100-3107.

    11. [11]

      [11] SUN M Y, NICOSIA D, PRINS R. The effects of fluorine, phosphate and chelating agents on hydrotreating catalysts and catalysis[J]. Catal Today, 2003, 86(1/4): 173-189.

    12. [12]

      [12] 倪月琴, 憬龄, 赵瑛. 工业用加氢脱氮催化剂所含MoS2的形貌[J]. 催化学报, 1994, 15(6): 422-425. (NI Yue-qin, JING Ling, ZHAO Ying. The MoS2 morphology of industrial hydrodenitrogenation catalysts[J]. Chinese Journal of Catalysis, 1994, 15(6): 422-425.)

    13. [13]

      [13] XIANG C, CHAI Y M, LIU C G. Effect of phosphorus on the hydro-desulfurization and hydro-denitrogenation performance of presulfided NiMo/Al2O3 catalyst[J]. J Chem Phys, 2011, 39(5): 355-360.

    14. [14]

      [14] SCHEFFER B, HEIJEINGA J J, MOULIJIN J A. An electron spectroscopy and X-ray diffraction study of NiO/Al2O3 and WO3/Al2O3 catalysts[J]. J Phys Chem, 1987, 91(18): 4752-4759.

    15. [15]

      [15] MINGYONG S, BURGI T, CATTANEO R, VAN LANGEVELD D, PRINS R. TPS, XPS, QEXAFS and XANES investigation of the Sulfidation of NiW/Al2O3-F catalysts[J]. J Catal, 2001, 201(2): 258-269.

    16. [16]

      [16] QIU L M, XU G T. Peak overlaps and corresponding solutions in the X-ray photoelectron spectroscopic study of hydro-desulfurization catalysts[J]. Appl Surf Sci, 2010, 256(11): 3413-3417.

    17. [17]

      [17] BAKER M A, GILMORE R, LENARDI C, GISSLER W. XPS investigation of preferential sputtering of S from MoS2 and determination of MoSx stoichiometry from Mo and S peak positions[J]. Appl Surf Sci, 1999, 150(1/4): 255-262.

    18. [18]

      [18] TAYEB K B, LAMONIER C, LANCELOT C, FOURNIER M, BONDUELLE A, BERTONCINI F. Active phase genesis of NiW hydrocracking catalysts based on nickel salt heteropolytungstate: Comparison with reference catalyst[J]. Appl Catal B: Environ, 2012, 126: 55-63.

    19. [19]

      [19] YU G L, ZHOU Y S, WEI Q. A novel method for preparing well dispersed and highly sulfide NiW hydro-denitrogenation catalyst[J]. Catal Commun, 2012, 23: 48-53.

  • 加载中
    1. [1]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    2. [2]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    3. [3]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    4. [4]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    5. [5]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    6. [6]

      Yu Wang Haiyang Shi Zihan Chen Feng Chen Ping Wang Xuefei Wang . 具有富电子Ptδ-壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-. doi: 10.1016/j.actphy.2025.100081

    7. [7]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    8. [8]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    9. [9]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    10. [10]

      Linjie ZHUXufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416

    11. [11]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    12. [12]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    13. [13]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

    14. [14]

      Xue Liu Lipeng Wang Luling Li Kai Wang Wenju Liu Biao Hu Daofan Cao Fenghao Jiang Junguo Li Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049

    15. [15]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    16. [16]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    17. [17]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    18. [18]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    19. [19]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    20. [20]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

Metrics
  • PDF Downloads(0)
  • Abstract views(769)
  • HTML views(68)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return