Citation: OUYANG Xin-ping, HUANG Xiang-zhen, QIU Xue-qing. Liquefaction of wheat straw alkali lignin under microwave irradiation[J]. Journal of Fuel Chemistry and Technology, ;2014, 42(10): 1212-1217. shu

Liquefaction of wheat straw alkali lignin under microwave irradiation

  • Corresponding author: QIU Xue-qing, 
  • Received Date: 5 June 2014
    Available Online: 4 July 2014

    Fund Project: 国家重点基础研究发展规划(973计划, 2012CB215302)。 (973计划, 2012CB215302)

  • The effects of liquefying agent, catalyst, reaction temperature and time on the yield of bio-oil in microwave assisted liquefaction of wheat straw alkali lignin were investigated. And the liquefaction products were characterized by FT-IR, GC-MS and 1H-NMR. It is found that microwave irradiation greatly shortens liquefaction time with methanol as liquefying agent and ferric sulfate as catalyst, where the yield of bio-oil is up to 55.22% at the relatively low liquefaction temperature of 160 ℃ for 5 min. The structure of residual lignin after liquefaction exhibits very limited variation, indicating that the degraded lignin fragments have lower probability of recondensation, and residual lignin can be reused to improve the utilization rate of lignin. The identified liquefaction products are mainly monophenolic compounds, in which S, G and H type compounds account for 57.72%, 25.28% and 8.98%, respectively. The existence of the signals for β-O-4 and C-C bonds in the 1H-NMR spectra suggests that the bio-oils include a small amount of dimers and oligomers except for monophenolic compounds.
  • 加载中
    1. [1]

      [1] CUI C, SUN R, ARGYROPOULOS D S. Fractional precipitation of softwood kraft lignin: Isolation of narrow fractions common to a variety of lignins[J]. ACS Sus Chem Eng, 2014, 2(4): 959-968.

    2. [2]

      [2] PETROCELLI F P, KLEIN M T. Chemical modeling analysis of the yields of single-ring phenolics from lignin liquefaction[J]. Ind Eng Chem Prod Res Dev, 1985, 24(4): 635-641.

    3. [3]

      [3] HORÁCEK J, HOMOLA F, KUBICKOVÁ I, KUBICKA D. Lignin to liquids over sulfided catalysts[J]. Catal Today, 2012, 179(1): 191-198.

    4. [4]

      [4] 叶俊, 李广学, 周博涵, 曹从伟, 杨和彦, 李家鸣. ZnCl2催化木质素磺酸盐加氢液化的溶剂效应[J]. 燃料化学学报, 2012, 40(3): 321-325. (YE Jun, LI Guang-xue, ZHOU Bo-han, CAO Cong-wei, YANG He-yan, LI Jia-ming. Solvent effect of lignosulfonate liquefaction by ZnCl2 catalyzed hydrogenation[J]. Journal of Fuel Chemistry and Technology, 2012, 40(3): 321-325.)

    5. [5]

      [5] 陈啸, 成有为, 李希. 甲醇降解碱木质素[J]. 化学反应工程与工艺, 2012, 28(2): 129-137. (CHEN Xiao, CHENG You-wei, LI Xi. Degradation of alkali lignin in methanol[J]. Chemical Reaction Engineering and Technology, 2012, 28(2): 129-137.)

    6. [6]

      [6] VOITL T, ROHR P R. Demonstration of a process for the conversion of kraft lignin into vanillin and methyl vanillate by acidic oxidation in aqueous methanol[J]. Ind Eng Chem Res, 2009, 49(2): 520-525.

    7. [7]

      [7] CHENG S, D'CRUZ I, WANG M, LEITCH M, XU C. Highly efficient liquefaction of woody biomass in hot-compressed alcohol-water co-solvents[J]. Energy Fuel, 2010, 24(9): 4659-4667.

    8. [8]

      [8] CHUMPOO J, PRASASSARAKICH P. Bio-oil from hydro-liquefaction of bagasse in supercritical ethanol[J]. Energy Fuel, 2010, 24(3): 2071-2077.

    9. [9]

      [9] NAGPURKAR L P, CHAUDHARI A R, EKHE J D. Formation of industrially important chemicals from thermal and microwave assisted oxidative degradation of industrial waste lignin[J]. Asian J Chem, 2002, 14(3): 1387-1392.

    10. [10]

      [10] DONG C, FENG C, LIU Q, SHEN D, XIAO R. Mechanism on microwave-assisted acidic solvolysis of black-liquor lignin[J]. Bioresource Technol, 2014, 162: 136-141.

    11. [11]

      [11] TOLEDANO A, SERRANO L, PINEDA A, ROMERO A A, LUQUE R, LABIDI J. Microwave-assisted depolymerisation of organosolv lignin via mild hydrogen-free hydrogenolysis: Catalyst screening[J]. Appl Catal B: Environ, 2014, 145: 43-55.

    12. [12]

      [12] BARTA K, MATSON T D, FETTIG M L, SCOTT S L, IRETSKII A V, FORD P C. Catalytic disassembly of an organosolv lignin via hydrogen transfer from supercritical methanol[J]. Green Chem, 2010, 12(9): 1640-1647.

    13. [13]

      [13] OASMAA A, KUOPPALA E, SELIN J F, GUST S, SOLANTAUSTA Y. Fast pyrolysis of forestry residue and pine.4. Improvement of the product quality by solvent addition[J]. Energy Fuel, 2004, 18(5): 1578-1583.

    14. [14]

      [14] 张朝红, 凌洪洁, 臧树良, 单亚波, 董殿波, 陈中林, 赵哲, 张春华. 硫酸铁改性活性炭催化微波降解甲基对硫磷[J]. 农药, 2007, 46(1): 40-42. (ZHANG Chao-hong, LING Hong-jie, ZANG Shu-liang, SHAN Ya-bo, DONG Dian-bo, CHEN Zhong-lin, ZHAO Zhe, ZHANG Chun-hua. Investigation on microwave degradation of parathion-methyl in the presence of modified active carbon catalyst with ferric sulfate[J]. Agrochemicals, 2007, 46(1): 40-42.)

    15. [15]

      [15] DERKACHEVA O, SUKHOV D. Investigation of lignins by FTIR spectroscopy[J]. Macromol Symp, 2008, 265(1): 61-68.

    16. [16]

      [16] CHIRILA O, TOTOLIN M, CAZACU G, DOBROMIR M, VASILE C. Lignin modification with carboxylic acids and butyrolactone under cold plasma conditions[J]. Ind Eng Chem Res, 2013, 52(37): 13264-13271.

    17. [17]

      [17] 杨东杰, 周海峰, 谢绍朐, 伍晓蕾, 邱学青. 漆酶活化碱木质素的磺甲基化反应活性研究[J]. 高分子学报, 2013, 2(2): 232-240. (YANG Dong-jie, ZHOU Hai-feng, XIE Shao-qu, WU Xiao-lei, QIU Xue-qing. Sulfomethylation reactivity of alkali lignin with laccase modification[J]. Acta Polymerica Sinica, 2013, 2(2): 232-240.)

    18. [18]

      [18] 陈晓旭, 孙付保, 张建华, 毛忠贵. 麦草木质素在甘油蒸煮过程中结构的变化[J]. 化工进展, 2010, 29(12): 2330-2335. (CHEN Xiao-xu, SUN Fu-bao, ZHANG Jian-hua, MAO Zhong-gui. Configuration variation of wheat straw lignin during cooking process with glycerol[J]. Chemical Industry and Engineering Progress, 2010, 29(12): 2330-2335.)

    19. [19]

      [19] MULLEN C A, STRAHAN G D, BOATENG A A. Characterization of various fast-pyrolysis bio-oil by NMR spectroscopy[J]. Energy Fuel, 2009, 23(5): 2707-2718.

  • 加载中
    1. [1]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    2. [2]

      Yuena Yu Fang Fang . Microwave-Assisted Synthesis of Safinamide Methanesulfonate. University Chemistry, 2024, 39(11): 210-216. doi: 10.3866/PKU.DXHX202401076

    3. [3]

      Liuxie Liu Jing He Jiali Du Shuang Mao Qianggen Li . Extension of Computational Chemical-Assisted Dipole Moment Measurement Experiment. University Chemistry, 2025, 40(3): 363-370. doi: 10.12461/PKU.DXHX202407108

    4. [4]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    5. [5]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    6. [6]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(12): 0-0.

    7. [7]

      Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440

    8. [8]

      Fangxuan Liu Ziyan Liu Guowei Zhou Tingting Gao Wenyu Liu Bin Sun . Hollow structured photocatalysts. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-. doi: 10.1016/j.actphy.2025.100071

    9. [9]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    10. [10]

      Xiaojun Wu Kai Hu Faqiong Zhao . Laying the Groundwork for General Chemistry Experiment Teaching: Exploration and Summary of Assisting Experiment Preparatory Work through Online and Offline Integration. University Chemistry, 2024, 39(8): 23-27. doi: 10.3866/PKU.DXHX202312052

    11. [11]

      Renqing Lü Shutao Wang Fang Wang Guoping Shen . Computational Chemistry Aided Organic Chemistry Teaching: A Case of Comparison of Basicity and Stability of Diazine Isomers. University Chemistry, 2025, 40(3): 76-82. doi: 10.12461/PKU.DXHX202404119

    12. [12]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    13. [13]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    14. [14]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    15. [15]

      Zhibei Qu Changxin Wang Lei Li Jiaze Li Jun Zhang . Organoid-on-a-Chip for Drug Screening and the Inherent Biochemistry Principles. University Chemistry, 2024, 39(7): 278-286. doi: 10.3866/PKU.DXHX202311039

    16. [16]

      Yang Liu Peng Chen Lei Liu . Chemistry “101 Plan”: Design and Construction of Chemical Biology Textbook. University Chemistry, 2024, 39(10): 45-51. doi: 10.12461/PKU.DXHX202407085

    17. [17]

      Tianyu Feng Guifang Jia Peng Zou Jun Huang Zhanxia Lü Zhen Gao Chu Wang . Construction of the Chemistry Biology Experiment Course in the Chemistry “101 Program”. University Chemistry, 2024, 39(10): 69-77. doi: 10.12461/PKU.DXHX202409002

    18. [18]

      Zhaoxin LIRuibo WEIMin ZHANGZefeng WANGJing ZHENGJianbo LIU . Advancements in the construction of inorganic protocells and their cell mimic and bio-catalytical applications. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2286-2302. doi: 10.11862/CJIC.20240235

    19. [19]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    20. [20]

      Lina Feng Guoyu Jiang Xiaoxia Jian Jianguo Wang . Application of Organic Radical Materials in Biomedicine. University Chemistry, 2025, 40(4): 253-260. doi: 10.12461/PKU.DXHX202405171

Metrics
  • PDF Downloads(0)
  • Abstract views(453)
  • HTML views(29)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return