Citation: ZHANG Lei, ZHOU Fu-xun, ZHAO Jian-tao, WU Zhi-wei, WANG Jian-guo, FANG Yi-tian. Reaction kinetics of methane combustion on copper-based catalyst[J]. Journal of Fuel Chemistry and Technology, ;2014, 42(9): 1140-1145. shu

Reaction kinetics of methane combustion on copper-based catalyst

  • Corresponding author: ZHANG Lei, 
  • Received Date: 13 February 2014
    Available Online: 2 May 2014

    Fund Project: 山西省科技重大专项(20111101005)。 (20111101005)

  • An experimental investigation of methane combustion on copper-based catalyst was carried out in a micro-fixed bed reactor under atmospheric pressure at 450~500℃ with inlet methane volume fraction between 10% and 35%. The influence of methane partial pressure on reaction rate is found to be significant, while that of oxygen is neglectable. Parameters of the kinetic model were estimated using the least squares method. The resulted kinetic model of methane catalytic combustion is -rCH4=1.61×107×e-108 000/RT×pCH40.5. Predicted and experimental values of methane conversion agree well with each other, which shows the reliability and accuracy of the model. The above reaction can be described as a two-step reaction according to the experimental result. Oxygen reacts quickly with the active vacancy sites of the catalyst to form adsorbed oxygen molecules which reacts with methane molecule to form carbon dioxide and water.
  • 加载中
    1. [1]

      [1] 廖炯, 李煊, 马磊, 陈耀壮, 曾健, 古共伟. 含氧煤层气利用技术进展[J]. 化工进展, 2008, 27: 281-285. (LIAO Jiong, LI Xuan, MA Lei, CHEN Yao-shi, ZENG Jian, GU Gong-wei. Progress in oxygen-bearing coal mine methane utilization[J]. Chemical Industry and Engineering Progress, 2008, 27: 281-285.)

    2. [2]

      [2] LUO D, DAI Y. Economic evaluation of coalbed methane production in China[J]. Energy Policy, 2009, 37(10): 3883-3889.

    3. [3]

      [3] 张建博, 王红岩, 赵庆波. 中国煤层气地质[M]. 北京: 地质出版社, 2000. (ZHANG Jian-bo, WANG Hong-yan, ZHAO Qing-bo. Coalbed gas geology in China[M]. Beijing: Geological Publishing House, 2000.)

    4. [4]

      [4] 郑珩, 陈耀壮, 廖炯, 马磊, 曾健. 煤层气脱氧制CNG/LNG技术开发[J]. 化工进展, 2010, 29(S1): 337-341. (ZHENG Heng, CHEN Yao-zhuang, LIAO Jiong, MA Lei, ZENG Jian. Producing CNG and LNG by deoxidization of coalbed methane[J]. Chemical Industry and Engineering Progress, 2010, 29(S1): 337-341.)

    5. [5]

      [5] 郑志, 徐晓瑞, 张鹏宇, 王树立. 混空煤层气脱氧技术现状及展望[J]. 能源技术与管理, 2009, 3: 101-103. (ZHENG Zhi, XU Xiao-rui, ZHANG Peng-yu, WANG Shu-li. Status and prospect of coalbed methane deoxidization technique[J]. Energy Technology and Management, 2009, 3: 101-103.)

    6. [6]

      [6] 陆富生. 甲烷催化燃烧催化剂催化理论与应用研究进展[J]. 化工时刊, 2009, 23(8): 52-56. (LU Fu-sheng. Research progress of the catalysts for methane catalytic combustion in the theory and application[J]. Chemical Industry Times, 2009, 23(8): 52-56.)

    7. [7]

      [7] BIARD P F, BOUZAZA A, WOLBERT D. Photocatalytic degradation of two volatile fatty acids in an annular plug-flowreactor: Kinetic modeling and contribution of mass transfer rate[J]. Environ Sci Technol, 2007, 41(8): 2908-2914.

    8. [8]

      [8] SU S, AGNEW J. Catalytic combustion of coalmine ventilation airmethane[J]. Fuel, 2006, 85(9): 1201-1210.

    9. [9]

      [9] DENG Y, NEVELL T G. Oscillations of methane combustion over alumina-supported palladium catalysts under oxygen-deficient conditions[J]. J Mol Catal A, 1999, 142(1): 51-60.

    10. [10]

      [10] CHOUNDHARY T V, BANERJEE S, CHOUDNARY V R. Catalysts for combustion of methane and lower alkanes[J]. Appl Catal A: Gen, 2002, 234(1): 1-23.

    11. [11]

      [11] 廖炯, 陈耀壮, 胡善霖, 姚松柏, 雷菊梅, 白燕. 一种含氧煤层气脱氧催化剂及其制备方法及应用: 中国, CNl01322942A. 2008-12-17. (LIAO Jiong, CHEN Yao-zhuang, HU Shan-lin, YAO Song-bai, LEI Ju-mei, BAI Yan. A kind of oxygen-bearing coal mine methanedeoxidization catalyst and its preparation, utilization: CN, 101322942A. 2008-12-17.)

    12. [12]

      [12] 周福勋, 赵建涛, 张磊, 吴志伟, 王建国, 房倚天, 秦张峰. 含氧煤层气流化床催化燃烧脱氧特性研究[J]. 燃料化学学报, 2013, 41(5): 523-529. (ZHOU Fu-xun, ZHAO Jian-tao, ZHANG Lei, WU Zhi-wei, WANG Jian-guo, FANG Yi-tian, QIN Zhang-feng. Catalytic deoxidization characteristic ofoxygen-bearing coal mine methane in the fluidized bed reactor[J]. Journal of Fuel Chemistry and Technology, 2013, 41(5): 523-529.)

    13. [13]

      [13] 陈甘棠. 化学反应工程[M]. 3版. 北京: 化学工业出版社, 2007. (CHEN Gan-tang. Chemical reaction engineering[M]. 3rd ed. Beijing: Chemical Industry Press, 2007.)

    14. [14]

      [14] THAICHAROENSUTCHARITTHAM S, MEEYOO V, KITIYANAN B, RANGSUNVIGIT P, RIRKSOMBOON T. Catalytic combustion of methane over NiO/Ce0.75Zr0.25O2 catalyst[J]. Catal Commun, 2009, 10(5): 673-677.

    15. [15]

      [15] ARTIZZU-Duart P, BRULLE Y, GAILLARD F, GUILHAUME N, PRIMET M. Catalytic combustion of methane over copper- and manganese-substituted barium hexaaluminates[J]. Catal Today, 1999, 54(1): 181-190.

    16. [16]

      [16] LIU Z, LU G, GUO Y, WANG Y, GUO Y. Catalytic performance of La1-xErxCoO3 perovskite for the deoxidization of coal bed methane and role of erbium in a catalyst[J]. Catal Sci Technol, 2011, 1(6): 1006-1012.

    17. [17]

      [17] 陈诵英, 陈平, 李永旺, 王建国. 催化反应动力学[M]. 北京: 化学工业出版社, 2006. (CHEN Yong-ying, CHEN Ping, LI Yong-wang, WANG Jian-guo. Catalytic reaction kinetics[M]. Beijing: Chemical Industry Press, 2006.)

    18. [18]

      [18] PENGPANICH S, MEEYOO V, RIRKSOMBOON T,BUNYAKIAT K. Catalytic oxidation of methane over CeO2-ZrO2 mixed oxide solidsolution catalysts prepared via urea hydrolysis[J]. Appl Catal A: Gen, 2002, 234(1/2): 221-233.

  • 加载中
    1. [1]

      Jiajie Cai Chang Cheng Bowen Liu Jianjun Zhang Chuanjia Jiang Bei Cheng . CdS/DBTSO-BDTO S型异质结光催化制氢及其电荷转移动力学. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-. doi: 10.1016/j.actphy.2025.100084

    2. [2]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    3. [3]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    4. [4]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    5. [5]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    6. [6]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    7. [7]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    8. [8]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    9. [9]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    10. [10]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    11. [11]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    12. [12]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    13. [13]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    14. [14]

      Houzhen Xiao Mingyu Wang Yong Liu Bangsheng Lao Lingbin Lu Minghuai Yu . Course Ideological and Political Design of Combustion Heat Measurement Experiment. University Chemistry, 2024, 39(2): 7-13. doi: 10.3866/PKU.DXHX202310011

    15. [15]

      Jianchun Wang Ruyu Xie . The Fantastical Dance of Miss Electron: Contra-Thermodynamic Electrocatalytic Reactions. University Chemistry, 2025, 40(4): 331-339. doi: 10.12461/PKU.DXHX202406082

    16. [16]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    17. [17]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    18. [18]

      Shuyong Zhang Yaxian Zhu Wenqing Zhang Yuzhi Wang Jing Lu . Ideological and Political Design of Combustion Heat Measurement Experiment: Determination of Heat Value of Agricultural and Forestry Wastes. University Chemistry, 2024, 39(2): 1-6. doi: 10.3866/PKU.DXHX202303026

    19. [19]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    20. [20]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

Metrics
  • PDF Downloads(0)
  • Abstract views(595)
  • HTML views(62)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return