Citation: WANG Yu-guang, SUN Liang-liang, LUO Ling-hong, WU Ye-fan, LIU Li-li, SHI Ji-jun. The study of portable direct-flame solid oxide fuel cell (DF-SOFC) stack with butane fuel[J]. Journal of Fuel Chemistry and Technology, ;2014, 42(9): 1135-1139. shu

The study of portable direct-flame solid oxide fuel cell (DF-SOFC) stack with butane fuel

  • Corresponding author: SUN Liang-liang, 
  • Received Date: 16 April 2014
    Available Online: 21 June 2014

  • In this study, a portable direct-flame solid oxide fuel cell (DF-SOFC) stack has been demonstrated using the conventional butane gas as fuel. The stack is constructed by bundles of the 3 single cells in a series with conventional Ni/YSZ anode. The fuel cell structure and performance are characterized by scanning electron microscopy (SEM) and electrochemical workstation, respectively. The results show that the stack presents an open circuit voltage (OCV) of about 2.1 V and an output power of 0.24 W, which powers an USB fan in 4 h. The cell voltage is quite stable for 4 h, moreover, no carbon deposition is found in the anode layer. This indicates that the DF-SOFC stack can be used for portable applications.
  • 加载中
    1. [1]

      [1] TAO S W, IRVINE J T S. A redox-stable efficient anode for solid-oxide fuel cells[J]. Nat Mater, 2003, 2(2): 320-323.

    2. [2]

      [2] SEUNGDOO P, JOHN M V, RAYMOND J G. Direct oxidation of hydrocarbons in a solid-oxide fuel cell[J]. Nature, 2000, 404(16): 265-267.

    3. [3]

      [3] MICHAEL B P, JONATHAN M, GREGORY S J, BRYAN W E, ANTHONY M D, ROBERT A W. Hydrocarbon fuels in solid oxide fuel cells: In situ Raman studies of graphite formation and oxidation[J]. J Phys Chem C, 2008, 112(12): 5232-5240.

    4. [4]

      [4] STEVEN M, RAYMOND J G. Direct hydrocarbon solid oxide fuel cells[J]. Chem Rev, 2004, 104(10): 4845-4865.

    5. [5]

      [5] HAWKES A, LEACH M. Solid oxide fuel cell systems for residential micro-combined heat and power in the UK: Key economic drivers[J]. J Power Sources, 2005, 149(1): 72-83.

    6. [6]

      [6] SHAO Z P, HAILE S M. Anode-supported thin film fuel cells operated in a single chamber configuration[J]. Nature, 2004, 431(1): 170-173.

    7. [7]

      [7] KRNEMAYER H, BARZAN D, HORIUCHI M, SUGANUMA S, TOKUTAKE Y, SCHULZ C, BESSLER W G. A direct-flame solid oxide fuel cell (DFFC) operated on methane, propane, and butane[J]. J Power Sources, 2007, 166(1): 120-126.

    8. [8]

      [8] HORIUCHI M, KATAGIRI F, YOSHⅡKE J, SUGANUMA S, TOKUTAKE Y, KRONEMAYER H, BESSLER W G. Performance of a solid oxide fuel cell couple operated via in situ catalytic partial oxidation of n-butane[J]. J Power Sources, 2009, 189(2): 950-957.

    9. [9]

      [9] WANG K, RAN R, HAO Y, SHAO Z P, JIN W Q, XU N P. A high-performance no-chamber fuel cell operated on ethanol flame[J]. J Power Sources, 2008, 177(1): 33-39.

    10. [10]

      [10] SUN L L, HAO Y, ZHANG C M, RAN R, SHAO Z P. Coking-free direct-methanol-flame fuel cell with traditional nickel-cermet anode[J]. Int J Hydrogen Energy, 2010, 35(15): 7971-7981.

    11. [11]

      [11] HORIUCI M, SUGANUMA S, WATANABE M. Electrochemical power generation directly from combustion flame of gases, liquids, and solids[J]. J Electrochem Soc, 2004, 151(2): A1402-A1405.

    12. [12]

      [12] HORIUCI M, SUGANUMA S, WATANABE M, TOKUTAKE Y. Proceedings of the sixth european solid oxide fuel cell forum, lucerne[D]. Switzerland, 2004: 154-162.

    13. [13]

      [13] WANG K, ZENG P Y, AHN J. High performance direct flame fuel cell using a propane flame[J]. Combust Inst, 2011, 33(2): 3431-3437.

    14. [14]

      [14] SMITH J. Kitchen afloat: Galley management and meal preparation[D]. Sheridan House, 2002: 47-49.

    15. [15]

      [15] ZHANG C M, SUN L L, RAN R, SHAO Z P. Activation of a single-chamber solid oxide fuel cell by a simple catalyst-assisted in-situ process[J]. Electrochem Commun, 2009, 11(8): 1563-1566.

    16. [16]

      [16] GODICKEMEIER M, GAUCKLER L J. Engineering of solid oxide fuel cells with ceria-based electrolytes[J]. J Electrochem Soc, 1998, 145(2): 414-421.

    17. [17]

      [17] RIESS I. Mixed ionic-electronic conductors-material properties and applications[J]. Solid State Ionics, 2003, 157(1): 1-17.

  • 加载中
    1. [1]

      Ru SONGBiao WANGChunling LUBingbing NIUDongchao QIU . Electrochemical properties of stable and highly active PrBa0.5Sr0.5Fe1.6Ni0.4O5+δ cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 639-649. doi: 10.11862/CJIC.20240397

    2. [2]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    3. [3]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    4. [4]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    5. [5]

      Liangliang Song Haoyan Liang Shunqing Li Bao Qiu Zhaoping Liu . 超高比能电池高锰富锂层状氧化物正极材料面临的挑战与解决策略. Acta Physico-Chimica Sinica, 2025, 41(8): 100085-. doi: 10.1016/j.actphy.2025.100085

    6. [6]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    7. [7]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    8. [8]

      Xueli Mu Lingli Han Tao Liu . Quantum Chemical Calculation Study on the E2 Elimination Reaction of Halohydrocarbon: Designing a Computational Chemistry Experiment. University Chemistry, 2025, 40(3): 68-75. doi: 10.12461/PKU.DXHX202404057

    9. [9]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    10. [10]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    11. [11]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    12. [12]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    13. [13]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    14. [14]

      Lisha LEIWei YONGYiting CHENGYibo WANGWenchao HUANGJunhuan ZHAOZhongjie ZHAIYangbin DING . Application of regenerated cellulose and reduced graphene oxide film in synergistic power generation from moisture electricity generation and Mg-air batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1151-1161. doi: 10.11862/CJIC.20240202

    15. [15]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    16. [16]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    17. [17]

      Wenqi Gao Xiaoyan Fan Feixiang Wang Zhuojun Fu Jing Zhang Enlai Hu Peijun Gong . Exploring Nernst Equation Factors and Applications of Solid Zinc-Air Battery. University Chemistry, 2024, 39(5): 98-107. doi: 10.3866/PKU.DXHX202310026

    18. [18]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    19. [19]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    20. [20]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

Metrics
  • PDF Downloads(0)
  • Abstract views(681)
  • HTML views(77)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return